
Enhancing Cryptocurrency Blocklisting: A Secure,
Trustless, and Effective Realization

Yuefeng Du∗†, Anxin Zhou∗†, and Cong Wang∗†
∗City University of Hong Kong, Hong Kong; †City University of Hong Kong Shenzhen Research Institute, China

Abstract—The flourishing development of blockchain and
cryptocurrency has made it a hotbed for cyber-criminals to imple-
ment virtually untraceable scams. Consequently, the blockchain
ecosystem urgently needs an effective method to help users stay
away from scams in order to create an enticing investment
environment. Despite the massive deployment of blocklist query
APIs for malicious and scam domains/URLs in the industry, we
identify two core reasons why existing blocklist services find
it difficult to thrive in the cryptocurrency paradigm: 1) the
compelling need to protect a user query due to sensitivity and
high value of query content, i.e., payment addresses; 2) the thorny
issue of evaluating the quality of blocklists effectively, in the face
of common practices of incompetent providers.

To this end, we first provide a private and highly efficient
blocklist query scheme as a basic design, which conveniently
achieves backward compatibility with current blockchain pay-
ment systems at a considerably low cost. Based on this design,
we propose a new framework for shareholders to evaluate the
quality of blocklists. Our framework provides stronger security
guarantees than other similar works, as it is capable of sup-
pressing both individual biasing and coercive manipulation at
the same time. We provide a complete game-theoretic analysis
and demonstrate comprehensive evaluation results to confirm the
effectiveness and efficiency of our solutions, under the settings
of a practical number of shareholders.

I. INTRODUCTION

The past decade has witnessed the prolific development
of blockchain applications and the value of cryptocurrencies
such as Bitcoin [1] and Ethereum [2]. Using cryptocurrencies,
users can transfer money without going through trusted fi-
nancial intermediation. Besides, they also enjoy the benefits
of pseudonyms (called payment addresses). However, the
decentralized nature of cryptocurrencies also facilitates the
implementation of criminal activity, which is difficult for ordi-
nary users to detect because of the pseudonymity of payment
addresses. Among cybercrimes, phishing scams [3] and Ponzi
schemes [4]–[6] have been found to entice a large base of
victims. As analyzed in a recent report [7], cryptocurrency-
related crime is primarily made up of scams, whose annual
revenue amounts to billions of US dollars, with the annual
number of victims exceeding 7 million by the end of 2020.

Large-scale blocklist services have proven helpful to keep
users alerted to scams over the years [8], [9], with wide im-
plementation by modern browsers [10]. However, many issues
would arise when off-the-shelf blocklist solutions are applied
directly to decentralized cryptocurrency payment systems. Af-
ter reviewing prominent public cryptocurrency blocklists [11],
[12], we identify two crucial reasons for the lack of acceptance
of cryptocurrency blocklist services available nowadays.

Prevailing economics-driven providers. A typical cryptocur-
rency blocklist service consists of two parties, namely the
users of the service and the moderators on behalf of platform
providers that aggregate suspicious payment addresses and
provide query APIs. In contrast with domain/URL blocklists,
cryptocurrency addresses do not present unique characteris-
tics for analysis, let alone automatic detection of suspicious
addresses, which makes the practices of blocklisting indis-
pensable. Needless to say, privacy becomes a major concern
of great severity, especially for users with complex economic
relationships. Specifically, the platform is very much motivated
to monetize the information of plaintext queries made by large
volumes of users, as it is beneficial to infer payment habits
and build high-value user profiles [13]. In other words, as
user queries for payment addresses are of potential value,
addressing privacy concerns is even more beneficial for cryp-
tocurrency users than users of conventional blocklists.
Overlooked incompetence of providers. The other major
obstacle to the widespread deployment is the quality of
cryptocurrency blocklists, which is more challenging to deal
with in reality. As evidenced by a recent work [3], detection
of phishing attacks on Ethereum is greatly hampered by the
vast data imbalance exhibited in open-sourced cryptocurrency
blocklists. Notably, state-of-the-art work like [14] has exten-
sively studied the problem of how to improve the quality
of domain/URL blocklists for accuracy increase and broader
coverage. Most of the efforts implictly assume trust anchor
upon platforms. Specifically, these platforms that provide
blocklist query services are heavily trusted for their expertise.
But for our scenario, it is such a strong assumption to solely
trust a centralized platform for their competence. One might
intuitively think: “is it possible to derive an unbiased algorithm
to determine which blocklist provider should be trusted and
favored more?” We argue instead of this, it is more critical to
ask: How to effectively evaluate the quality of cryptocurrency
blocklists in the absence of trusted parties?
Addressing privacy concerns. We present in this paper our
preliminary efforts towards building a blockchain-empowered
framework to address the above key challenges and hopefully
facilitate the adoption of more effective cryptocurrency block-
lists. Our primary focus is to achieve a privacy-preserving yet
sufficiently light query design, complementing the existing
services of cryptocurrency blocklists with minimal changes.
From a technical perspective, at the heart of our query protocol
is a hybrid design that seamlessly combines the provable
security framework of oblivious computation and the data

anonymization guarantees provided by k-anonymity. As a
result, our query design can effectively obfuscate user queries
while minimizing the use of complex and computationally
expensive cryptographic primitives. This serves as a baseline
solution for cryptocurrency blocklisting, assuming blocklists
are maintained and managed by a centralized and honest party
that constantly provides high-quality blocklists.
Decentralized evaluation of quality. The evaluation of cryp-
tocurrency blocklists is a very challenging task, essentially
because there is simply no analytical ground truth as well
as algorithmic solution. To this end, we allow shareholders
selected from all users to play a central role in the collaborative
decision making, instead of blindly trusting providers.

Following the convention of decentralized applications, we
also rely on economic rationality instantiated with cryptocur-
rency. Intuitively, interested players have to deposit sufficient
cryptocurrencies to become shareholders. At the end of evalu-
ation procedures, the incentive mechanism rewards the share-
holders who share the same intention with the final outcome
grounded on quorum-based voting, and discourages the others
by confiscating portions of deposits. We stress this model has
been widely adopted in numerous endeavors [15]–[17] with
various focuses. However, these conventional solutions have
largely overlooked two disturbing security implications: 1) the
final outcome could be biased due to asynchronous procedures,
as an individual party can submit its own share after inferring
others; 2) a group of coercive force could also tamper the
integrity of the system by deliberating bribing and colluding
in order to manipulate the final result as intended.
Major technical contributions. Inspired by the latest re-
searches [18], [19], we address the former by promoting the
secrecy of the system. More specifically, we provide a protec-
tion mechanism aimed at the confidentiality of intermediate
results throughout the evaluation procedures. Although state-
of-the-art constructions of generic frameworks based on zk-
snarks [20]–[23] are available, we are more concerned with
concrete efficiency constraints in this work. To this end, we
leverage a highly customized zero knowledge proof (ZKP)
protocol to attest to the opening of cryptographic commitments
for confidentiality protection of submitted shares.

Grounded on in-depth game-theoretic analysis, we also pro-
vide a new cryptoeconomics framework to suppress coercive
behaviors, which to our best knowledge, is an important aspect
unaddressed in previous works. As an affordable countermea-
sure, we first anonymize the identities of shareholders and
provide feasible bridging methods based on efficient ZKP to
utilize existing private payment frameworks. In addition, we
further provide methods to increase the costs of coercing one
shareholder by blending all shareholders into a larger pool of
candidates with the use of verifiable random function.
Our empirical results. As part of our research efforts to
understand the practical performance of our designs, we have
created system prototypes and conducted extensive experi-
ments. Our basic privacy-preserving design for cryptocurrency
blocklist query brings a negligible amount of overhead, with
merely a few milliseconds of processing time on the user end.

At the same time, the solution also scales well on the server
side. As for the decentralized procedures for the evaluation of
blocklist quality, each shareholder’s computation time is well
within 50 ms for a medium-size group of 15 representatives
selected from users. The monetary cost risen from public ver-
ification to effectively evaluate a target blocklist is reasonable
as well, i.e., around 16 USD per shareholder as of April 2022.

II. PRELIMINARIES

Oblivious pseduorandom function. A useful protocol [24],
[25] to enable two parties, one with an input m and the other
with a secret key sk, to jointly compute a pseudorandom
function (PRF) F(sk,m): {0, 1}∗ × {0, 1}∗ → {0, 1}l. The
computation of this PRF is operated obliviously in the sense
that the former party only learns the output, whereas the latter
party learns nothing from the interaction. Instead of directly
applying this protocol, our design uses this primitive as a
building block and aims to improve performance in terms of
key factors such as communication overhead and throughput.
Homomorphic commitment. A commitment scheme [26] that
allows a party to commit a value while hiding the value to
others. Aside from the property of hiding, the binding property
guarantees the party cannot modify the underlying value
after commitment. Consider a simple commitment scheme:
Com(m) = gmhr, where r is randomness provided by the
committed party. The property of homomorphism is desirable
in our usage scenario. Specifically, given two cryptographic
commitments for two messages m1 and m2, we can compute
Com(m1 +m2) by Com(m1) · Com(m2) = gm1+m2hr1+r2 .
Zero knowledge proof of knowledge. A protocol [27] that
enables a party to convince another party about knowledge of
the witness for a computational relation without revealing in-
formation of the witness. In particular, we use a non-interactive
version (NIZK) [19], [28] to prove a series of commitments are
well-formed without disclosing the underlying values. A NIZK
protocol consists of three stages: (Setup, Prove, Verify). Our
Setup procedures are public in the sense that it outputs a
publicly accessible Common Reference String (CRS).

III. SYSTEM OVERVIEW

Our system is meant to suit the enormous demands
for privacy-assured and competent blocklist services. The
blockchain paradigm comes in handy for the needs of in-
centives and public auditability. That is, we leverage an open
blockchain platform with smart contract [2] to establish trust
as well as to re-allocate cryptocurrencies among participants.

A. System architecture

As a starting point, we are after a simplified but also
common and useful scenario, where we only consider two
parties, namely the users and the cryptocurrency blocklist
providers. We then have two basic assumptions: 1) service
providers publicize high-quality blocklists freely; 2) users can
conveniently find competent blocklist providers. It is fairly rea-
sonable to consider a curious blocklist provider hereby, as it is

Blockchain

Obfuscated query

❷ Intermediate results

❶ Deposit

❹Payoff

Shareholders

User Blocklist

❸ Aggregation

Verify

Fig. 1: System architecture with highlighted security guarantees.

incentivized to infer valuable information from collected user
queries, e.g., w.r.t. large-amount cryptocurrency transactions.

Hence, as displayed with the solid line in Fig. 1, our basic
solution is to protect the confidentiality of user queries. In
addition, we also intend to realize a lightweight design with
imperceivable user overhead. Next, we consider the validity of
the above assumptions. In practice, publicly available block-
lists are often far from high-quality blocklists. The alternative
way is to trust major platforms that provide paid premium
services. Nonetheless, it is still difficult to audit whether these
platforms actually provide reliable services as promised.

To this end, we propose a framework to resolve the trust
issues and auditability concerns at once. We simply allow
committed shareholders to evaluate the blocklist quality and
validate the service. The complete system architecture is
also depicted in Fig. 1. One notable effort of our design
is to anonymize the interaction between the blockchain and
users/shareholders, thus increasing the difficulty of manipula-
tive attempts. In addition, the system should also be resistant
to manipulation, e.g., bribing, collusion, which is largely
overlooked in the literature. We provide a cryptoeconomic
analysis of the countermeasures to discourage manipulation
from a game-theoretic view.

B. Threat model

We now state our concrete threat assumptions for both our
basic query design and the quality evaluation design. Firstly,
the blocklist service provider is modeled as an honest but
curious party, who is primarily interested in the users’ query
content, e.g., data reselling for maximized profits. On the other
hand, we also consider that some users may try to exhaust
the blocklist services, to either learn as much of the blocklist
contents as possible or maliciously launch availability attacks.

For decentralized evaluation, we use the blockchain as
the underlying platform trusted for integrity and availability
but not for confidentiality. Expressly, we assume that the
blockchain guarantees that any computation running atop func-
tions exactly as specified. But the computation itself and used
data are all publicly visible. In addition, all cryptocurrency
payments stored on the blockchain can be publicly traced. We
stress that the inherent vulnerabilities of existing blockchain
implementation, such as 51% attack against the Proof of
Work consensus and eclipse attacks against synchronization
of network broadcasting, are out of the scope of this paper.

As demonstrated in Fig. 1, tasks running atop the blockchain
are meant to be publicly visible. A group of coercers are
fully incentivized to fix the results to maximize their economic
interests, thus compromising the integrity of the system. One
of our main design goals is to thwart any such attempt
and create a robust framework (in the sense of economic
rationality) for decentralized evaluation of blocklist quality and
validation of blocklist services.

C. Goals

According to the threat assumptions above, we summarize
the core security goals we wish to achieve. In addition, we also
list the performance and economic goals we strive to achieve
in pursuit of the most feasible implementation.
• Query confidentiality: The target to be queried by a user

is never disclosed to the blocklist service provider, but the
user can effectively learn if the target is in the blocklist.

• Service scalability: A blocklist service provider should
be capable of serving a considerable amount of users
simultaneously with relatively low maintenance cost.

• Evaluation robustness: The quality of blocklist is eval-
uated in a fully decentralized manner, yet also immune
to undesired tampering to some extent.

• Minimal costs: Ordinary users should be able to become
shareholders to evaluate a blocklist with minimized mon-
etary cost induced by cryptocurrency deposits.

IV. BASIC DESIGN OF SECURE BLOCKLIST QUERY

We first consider the unsatisfying demand for effectively
blocking scam addresses without the massive user informa-
tion leakage to service providers. Assuming the existence of
curious-but-honest blocklist service providers, we propose a
lightweight and scalable solution for interested users to query
any blocklist service provider in a privacy-preserving manner.

A. Design rationale

The underlying problem we study here is closely connected
to numerous comprehensively studied cryptographic primi-
tives, such as Private Information Retrieval [29] and Private Set
Intersection [30]. Despite strong provable security guarantees,
these protocols are not suitable for our usage case that requires
frequent interaction in practice, as they inevitably introduce
massive undesirable overhead.

As a result, it is preferable to have a privacy-preserving
blocklist query design that balances the performance goals
and security requirements. In terms of concrete efficiency,
there are two intuitive guidelines to be met: 1) the interaction
between the user and the service provider should be minimized
for the scalability of the system; 2) the computation required
for hiding user queries from the service provider should be
restrained as much as possible for user convenience.

We observe that these requirements can be simultaneously
fulfilled by integrating a bucketization scheme [31] with a
conventional message hiding protocol based on oblivious pseu-
dorandom function (OPRF). Intuitively, the OPRF serves as a
core pillar to enable joint two-party computation obliviously

Key procedures and interaction between client C and server S

Denote an oracle H : {0, 1}∗ → G.
S performs the setup with raw data D = {q1, · · · , qn}:

1. R←$ F // Used for the oblivious evaluation of user queries
2. for qi ∈ D do
3. b← H(qi)

R

4. p← prefix(H(qi), λ) // λ is pre-defined prefix bit length
5. bucketPartition(p, b) // 2λ buckets are partitioned
C performs the query procedures with query u:

1. r←$ F // Used for blinding the query
2. m← H(u)r // Masked query with the blinding factor
3. p← prefix(H(u), λ)

C −→ S : (p,m)
S generates the response:
1. sp ← bucketLookup(p) // Results with same prefix
2. ψ ← mR

S −→ C : (ψ, sp)
C checks:

1. verdict ← ψ1/r ∈ sp ? TRUE : FALSE

Fig. 2: Protocols for highly efficient privacy-preserving membership query.

such that our users only learn the output, whereas the target
service provider infers nothing throughout the interaction.
Based on that, a bucketization scheme that leverages the
divide-and-conquer strategy to deal with the bucketized data
pieces instead of the entire repository can greatly boost the per-
formance of the system. By combining these two primitives,
our design provides security guarantees of k-anonymity [32],
where k is determined by the bucket size. Later in Sec-
tion VI-B, we will show how to flexibly adjust the bucket
size for the balance of security and performance in practice.

B. Protocol details

To achieve k-anonymity for each of the derived bucket,
we assign each of the buckets with data in a way that the
access distribution is flattened without any bias. Inspired by the
practices in the paradigm of safe browsing [33] based on sim-
ilar blocklisting mechanisms, we adopt a simple bucketization
scheme based on prefix filtering of cryptographic hash results.
In other words, all blocklist contents that share the same hash
prefix are assigned to the same bucket. As demonstrated in a
previous work [34] that defines a formal security framework,
the security level of this scheme is affected by two crucial
factors, namely the prefix bit length λ and the blocklist size
S̃. To enforce k-anonymity given the feasible range of k,
our composite security framework also relies on the security
guarantees of OPRF constructions.

Figure 2 describes the computational procedures for a client
and a server, as well as the required interaction between the
two parties. We divide our protocol into four primary stages.

1) Data preprocessing: Before the target server S provides
the blocklist query service, an initial setup should be
completed first to bind the raw data with a mask input
k randomly sampled from the finite field F by S. In
addition, S also needs to partition the blinded data into
buckets in accord with the required prefix bit length λ.
S can run this protocol in rotation whenever there is a
demand for adjusting k.

2) Secure query: User C initiates a valid query by hiding
its query content with a random coefficient r uniformly
sampled from the same field F. C then attaches the
plaintext of hash prefix (w.r.t λ) of the query content.
Notice a first-time user should synchronize on the value
of λ with the server in order to get the latest bucket size.
Optional steps: When S agrees to reveal the knowledge
of the prefix list of the raw data, most of the queries
requested by C can be completed locally by checking the
stored prefix list distributed by S. Specifically, C looks
up the same hash prefix in the small-sized prefix list. If
no match exists, it implies the query content is not in the
blocklist; otherwise, further interaction is required.

3) Online evaluation: To process the user query, S returns
all the results within the same bucket, denoted as sp and
blinds the user query with the same mask input R. Note
that within the lifecycle of unaltered R, the results sp can
be locally cached to circumvent online interaction when
consequent queries preserve the same prefix.

4) Response recover: Lastly, user C needs to recover the data
with its stored coefficient r, such that the result can be
used to determine if the query content matches with the
returned results sp.

Security guarantees. Assuming the Diffie-Hellman assump-
tion, the obliviousness property of the underlying OPRF prim-
itive plus the hash method we use enables us to prove in the
random oracle model that the service provider learns nothing
of the user query throughout the interaction. Likewise, the
pseudorandomness property helps to achieve bounded leakage
for blocklist contents not queried by the user.
Support for metadata query. Our protocol currently does
not include metadata information such as the categories and
reporting time. In practice, we believe this is the best strategy
as it is hard to unify the structure of different blocklists.
Besides, it would also be more challenging to evaluate the
quality of a target blocklist. Nonetheless, our protocol can be
extended to include any type of metadata, by leveraging the
primitive of Private Keyword Search [35].
Remarks on denial of service (DoS) attacks. A common de-
fense strategy is to adopt rate limiting through the mechanism
of authorized keys. In addition, in our design, we ensure that
server responses should not require a significant amount of
computation compared to requests made by clients (including
bogus requests). This is achieved with an inefficient oracle H .

V. ENHANCEMENT WITH DECENTRALIZED EVALUATION

The basic design we have illustrated achieves backward
compatibility with existing blocklist service providers at a low
cost. However, the implicit assumption that reliable service
providers are competent does not naturally hold in our motivat-
ing scenarios. How to distinguish high-quality services is often
a crucial problem, as centralized platforms like Google [10]
and Phishtank [36], which act as trust anchors, are missing in
the decentralized paradigm. Hereby, we start with a conven-
tional decentralized framework based on commit-vote-payoff
procedures, where ordinary peers become valid shareholder

Blockchain Shareholders

Blocklist
a. Deposit

b. Propose

1.Prf. of Dep.

2.Ver.
3.R1 res. & prf.

4.Ver. R1
5.R2 res. & prof.

6.Ver. R2

c. Evaluate

d. Aggregate
e. Deposit
Redistribute

Fig. 3: Publicly committed workflow of decentralized evaluation.

voters and a list of “evaluated” blocklists are generated and
the corresponding services are also periodically validated.

A. Commit reveal schemes

Since the earliest design of partial lock commit reveals pro-
tocol [16] implemented on Ethereum [2], many decentralized
applications have attempted to leverage the commit-and-reveal
approach to achieve consensus in a decentralized yet efficient
manner. Closely related to the inherent incentive mechanism of
blockchain, these schemes are typically built with assumptions
that all players are strategic (fully rational).

One widely adopted instantiation in recent industrial prac-
tices is the token curated registries [15], [37]. It proves
useful in settings where the ground truth is not available or
cannot be easily discovered. Concretely, consider a service
of unknown quality Q, and for simplicity, with an idealized
binary choice Q̂ indicating whether the service is reliable
among the consensus of n shareholders. In our system, n is
a small pre-determined number agreed upon among blocklist
users. Each shareholder voter has a vote vi as well as a
corresponding weight τi. As a result, Q̂ can be derived as
follows for a conventional quorum-based vote setting:

Q̂ =

{
1,

∑n−1
i=0 τivi >

1
2

∑n−1
i=0 τi

0,
∑n−1
i=0 τivi ≤ 1

2

∑n−1
i=0 τi

(1)

Consequently, a deterministic payoff function calculates the
rewards/penalties associated with each shareholder’s voting
shares τi, after comparing the outcome and the vote 〈Q̂, vi〉.
Note that the binary result derived among shareholders is
directly applicable in our case, as these shareholders could
represent the blocklist preference of all users.

In spite of its commonly acknowledged utilities in a decen-
tralized context, numerous security vulnerabilities have been
discovered [38]–[40]. One fundamental problem summarized
from these attacks is that internal procedure followers and
external adversaries are incentivized to abuse the system and
influence the final outcome.

B. Overview of our workflow

To help users curate high-quality blocklist services, we
adopt a design akin to the above-mentioned commit-and-reveal
approach. Likewise, our evaluation procedures also involve
two rounds of interaction for “pre-commitment” and “post-
aggregation”, but with enhanced overall security to discourage
coercion in our game-theoretic framework.

Difference from prior works. The literature [41] of secure
voting in centralized settings mostly considers these two sides
by formalizing a property known as perfect ballot secrecy.
Combining anonymization techniques with publicly verifiable
results, one latest work [19] claims design based on this prin-
ciple could be used to fairly derive evaluation results among
shareholders. However, we observe that in our decentralzied
context where sybil identities could be a big problem, coercers
can hind behind anonymized identities and commit resources
to become shareholders themselves. This viewpoint of coercers
is largely overlooked and unaddressed in prior works.

To this end, we consider our security countermeasures from
the perspectives of both sides: 1) implement an effective
protection mechanism with affordable costs; 2) reduce the
chance and thus the incentive for coercive attempts. The
former aspect is achieved by only publicizing auditing trails
for verification whereas anonymizing intermediate results,
demonstrated in Fig. 3. This largely prevents individual parties
from inferring the final outcome and attempting to bias it. To
mitigate coercion, we go to great lengths to increase the cost
of coercing one shareholder voter.
Workflow walkthrough. As demonstrated in Fig. 3, any user
can join the decentralized committee as a shareholder voter for
quality approval of the target blocklist service provider, as long
as a deposit is locked on the blockchain. On the other hand,
a blocklist service provider can propose for evaluation after
deposits, too. From the perspective of security, we decouple
the vulnerabilities of payment procedures and the evaluation
procedures in our design such that we can employ existing
building blocks proven to be secure.

To obtain unbiased and publicly verifiable evaluation results,
our security mechanism needs to fulfill these core security
requirements: 1) the final outcome can be correctly aggregated
without any trusted third parties; 2) it is publicly verifiable
that all shareholder voters faithfully follow the computation
procedures; 3) any shareholder’s vote is only recoverable by
the coalition of the remaining players, in order to rigorously
discourage the revealing of intermediate voting shares and thus
prevent potential collusion and subversion behaviors.

On the other hand, to discourage incentives-driven coercion,
we rely on the following observations: 1) it is indispensable to
anonymize the identities of shareholders throughout the work-
flow; 2) it is also of great necessity to hide transaction volumes
and transaction addresses while paying off the shareholders;
3) To prevent disguise as a shareholder, we have to obfuscate
shareholders among a large number of candidates such that it
is costly for coercers to coerce one shareholder.

Technically, we leverage the primitives of homomorphic
cryptographic, non-interactive zero knowledge proof (NIZK),
and verifiable random function. We stress that assembling
building blocks based on these primitives into a design with
affordable costs is non-trivial work.

C. Procedures of “evaluation”

Akin to the basic commit-and-reveal scheme, our proce-
dures consist of two rounds of interaction with the blockchain.

Registration:

Setup (thresh,N) // Define a threshold number for open registration

set cnt := 0;

VoteCommit (πdeposit , pk) from M

assert NIZKverify(πdeposit , φpub) = 1;
receive (commsecret , commvote , πA) from Mi
assert NIZKverify(πA, φA, commsecret , commvote) = 1;
cnt := cnt + 1; broadcast “intention fixed”;

On receive signal (cnt = thresh), output a random number ν

On receive (yi, prf i), check VRF.Verifypk(ν, yi, prf i)
?
= true

set selected .insert(i); otherwise set unselected .insert(i)
unlock $deposit , ∀i ∈ unselected ; broadcast “voters fixed”;

Auto-tally:

Setup ({commi}N−1
i=0)

set V := 1; cnt := 0; broadcast “setup completed”;

Vote (commsecret , commvote , ψ, πB) from Mi

assert NIZKverify(πB , φB , commsecret , commvote , ψ) = 1;
set V := V · ψ; cnt := cnt + 1;
broadcast “vote fixed”;

On receive signal (cnt = N)

set tally := solveDLP(g, V) // Max value for brute force search is N
if tally > N/2: set outcome := 1;
else : set outcome := 0;
call payoff(outcome, commi); broadcast “outcome released”;

Fig. 4: The blockchain-related activities in our secure decentralized framework that “evaluates” high-quality blocklist services.

The underlying reason is that we need each shareholder voter
to commit its vote during the first round, which can be
aggregated in the second round. Figure 4 displays the concrete
on-chain procedures of the two phases, namely the registration
and auto-tally phases. Below we elaborate on procedure details
of both on/off-chain operations. For ease of presentation, we
omit the voting weight τ in our presented procedures.
Registration phase: Initially, all parties need to agree on a
protocol to generate common reference string (CRS), which
includes public materials such as group generators g, h for
commitment. Upon a blocklist service proposal, the blockchain
is used to record all necessary information. It first initiates two
constant numbers thresh and N , indicating the number of
stakeholders it allows to deposit and the number it will select
by the end of the registration, respectively.

Next, any interested player generates a key pair (sk , pk)
for verfiable random function [42] later and sends pk to the
blockchain during the deposits registration through private
transactions. With verifiable deposit proof asserted on the
blockchain, the shareholder is allowed to send a commitment
to the intended vote. Let v be a binary voting option, and x
be a secret only known to the shareholder. The commitment
can be obtained as shown below:

commsecret = gx, commvote = gvhx (2)

After the shareholder submits the above commitment as
well as NIZK proof, the blockchain can publicly verify the
correctness of computation and count the shareholder in if the
verification passes. For all shareholders that have deposited
and passed verification, the blockchain generates a challenge
ν for each player to compute a result y through VRF.Evalsk(ν)
attested with a proof prf through VRF.Provesk(ν) to deter-
mine whether it is granted with the voting privilege. The
shareholder members of the decentralized committee are hence
fixed after the blockchain checks y and prf .
Auto-tally phase: For all selected shareholder voters, they also
have to complete the procedures of the second-round vote, in
order for their votes to be incorporated into the final result.
More concretely, a target shareholder voter p first assembles all
the commitments provided by others in the following manner:

Y =
∏p−1
i=0 commi,secret/

∏N−1
i=p+1 commi,secret (3)

Then, it also aggregates its vote with a commitment ψ =
gvY x. Intuitively, each individually aggregated result can be
used during the on-chain auto-tally procedures to cancel out
randomness (to hide votes) provided by each shareholder. This
is a very useful technique [41] formally proved secure in the
context of voting without trusted third parties. At the end of
this step, the shareholder voter is also required to attest to the
correctness of computation with NIZK proof.

The on-chain procedures begin to aggregate the intermediate
results after all the shareholder voters have submitted the
required materials. Otherwise, the voting procedures would be
deemed unsuccessful and the deposited tokens will be redis-
tributed. Assuming everything runs smoothly, the blockchain
simply multiplies the results computed by each shareholder
voter step by step and eventually derives a final outcome
V . Now the blockchain needs to run a brute force search
algorithm to find out the underlying solution to a discrete
logarithm problem. Despite its asymptotic difficulty, the so-
lution can be efficiently discovered in practice, as the domain
of N is constrained to a small scale for feasible consensus
building. This publicly found solution is equal to the number
of shareholder voters in support of the target blocklist service.
Bridging secure payoff. As we have mentioned earlier, it
requires a compatible design for secure payoffs to match
with the final outcome released by the blockchain, without
disclosing the votes of each individual shareholder. Essentially,
the deposit commitment of the corresponding shareholder
should be updated accordingly by multiplying with a new
“helper” commitment derived from the vote commitment as
well as a binary result calculated from the comparison between
the individual vote and the final outcome. A useful trick
here to form the “helper” commitment from the comparison
result without revealing individual vote is to multiply the
arithmetized expression of the boolean equality operation, i.e.,
b1 = b2 ⇔ 1 − b1 − b2 + 2b1b2. To put all pieces together,
consider a deposit commitment gamthsecret

′
, if a shareholder

wins the vote and is awarded one unit token, the updated
deposit commitment would become gamt+1hsecret+secret

′
.

Verifiable blocklist service. After the mutual decision among
the shareholders, the blocklist service provider obtains the
evaluation result attested by the corresponding publicly ver-
ifiable proof. However, the provider could still alter (portions
of) the entries in the blocklist, but this is out of our scope as it
is not incentivized to do so. The more likely situation would
be that the provider fails to clear up obsolete entries and sort
out valid blocklist entries.

In light of this, we specify that the blocklist service provider
has to repeat the above procedures periodically, according to
the pre-determined rules recorded on the blockchain after the
proposal. Additionally, we also allow any off-chain party to
challenge the blocklist service provider at any time, whose
required deposits should be no less than the blocklist service
provider. Note that shareholders need to evaluate the following
instead of merely blocklist quality: 1) verify that blocklist
entries are indeed included in the blocklist through random
membership inference. 2) verify that the prefixes and blocklist
entries are correctly mapped.
Security reduction. The desired quality “evaluation” proce-
dures rely on the correctness of auto-tally procedures, and
more specifically, the homomorphic property of our used
commitment. In fact, the following equation holds, as Y
provided by each shareholder in Equation (3) cancels out:

V =
∏N−1
i=0 gviY xi

i = g
∑N−1

i=0 vi

The entire design also hinges upon the security guarantees
of the primitives we have leveraged. Concretely, with the
standard Decisional Diffie-Hellman (DDH) assumption, our
design can straightforwardly fit in with the security framework
elaborated in [19]. Specifically, in order to support our feasible
construction of NIZK (explained below), we need to place
more public parameters in the CRS model, which can be
instantiated in practice with distributed setup procedures. With
CRS, we can prove the security of our design in the non-
programmable random oracle model (ROM).

D. Feasible instantiation of NIZK

Both rounds of the voting require the shareholder to obtain
valid NIZK proof to ensure the correctness of computation and
thus circumvent any potential dispute. For the algebra-friendly
commitment schemes used in our design, we can obtain
efficient NIZK constructions based on the sigma protocols and
the Fiat-Shamir heuristic [28]. The basic idea is to employ
the OR composition techniques [19] to show either the NIZK
statement is valid or the CRS contains a DDH tuple.

Figure 5 provides the detailed steps for a shareholder voter
to provide a NIZK proof attesting to the computed results
during the first round. Concretely, the public CRS should be
set up beforehand. It consists of six group generators, where
h1 and h2 are indispensably required to rigorously prove the
security. We also need a random oracle to make the zero
knowledge proof non-interactive.

As demonstrated earlier, M first determines its voting
option v, generates a random secret x and corresponding
commitment. For ease of presentation, we use c0 and C

Computation performed by shareholder M and the blockchain B

Let (g, h, h1, h2, ĝ, ĥ) ∈ G6 be public parameters.
Let R : {0, 1}∗ → F be a random oracle.
M computes:
1. x←$F // x is the voter’s secret
2. v ← setVote(),where v ∈ {0, 1} // v is the voter’s vote
3. (c0, c1, c2, C)← (gx, hx1 , h

x
2 , g

vhx)

// NIZK proof πA for relation φA((c0, c1, c2), x) = 1

4. α, β0, β1←$F
5. σ0, σ1, σ2 ← gα, hα1 , h

α
2 , γ0, γ1 ← ĝβ0gβ1 , ĥβ0hβ1

6. µ← R(c0, c1, c2, σ0, σ1, σ2, γ0, γ1)
7. a← −β0, b← β1, ω ← α+ (µ+ a)x

M −→ B : (c0, c1, c2, C, πA = (σ0, σ1, σ2, γ0, γ1, a, b, ω))
B computes µ from R and verifies πA:
1. µ← R(c0, c1, c2, σ0, σ1, σ2, γ0, γ1)

2. b0 ← σ0c
µ+a
0

?
= gω

3. b1 ← σ1c
µ+a
1

?
= hω1 , b2 ← σ2c

µ+a
2

?
= hω2

4. b3 ← γ0ĝ
a ?
= gb, b4 ← γ1ĥ

a ?
= hb

5. return b0 ∧ b1 ∧ b2 ∧ b3 ∧ b4

Fig. 5: Detailed computation procedures for the first round of interaction.

to represent commsecret and commvote in Equation (2),
respectively. In addition, M also needs to generate other two
commitments c1, c2 from x, which are used to form a DDH
triple (gα, hα1 , h

α
2) for the consequent NIZK computation.

Concretely, the NIZK protocol is used to prove the obtained
results c0, c1, c2 are all well-formed in the sense they are
derived from the same secret x. Notice we do not need to
prove C is also well-formed at this stage, as it is not used
by on-chain operations and we can leave it to the next phase.
Formally, it is equivalent to prove the following relation:

φA = {((c0, c1, c2), x) : c0 = gx ∧ c1 = hx1 ∧ c2 = hx2}

In order for M to generate a NIZK proof, three random
values are first sampled. Then, M obtains a challenge µ by
querying the random oracle. Later, the on-chain verification
also relies on this same query. By setting up the coefficients
a, b, ω in accord with µ, the proof πA is now complete.

Similarly, by leveraging the OR composition technique, it is
not hard to prove the following relation in the second round:

φB = {((c0, C, ψ, Y), (x, v) : c0 = gx ∧ C = gvhx ∧ ψ = gvY x)}

Notice the value Y calculated in Equation (3) is regarded as
public input because the blockchain also needs to re-compute
Y using intermediate results provided by all shareholders in
the first round. Due to the space limit, we omit the computation
details to obtain a NIZK proof πB for φB .

E. Game-theoretic analysis

Before we provide our design, we propose a game-theoretic
framework to generalize the above attacks. The main intu-
ition is that all the abusers (internally and externally) can
be viewed as a group of coercers maximizing their profits.
Hence, the basic idea is to model the decentralized evaluation
procedures as a simple strategic game between the ‘good’
society representing public interests and coercer(s) in contrast.
Specifically, we model such evaluation as a strategic game

TABLE I: Computational and communication overhead introduced by our design with k anonymity security guarantees.

Prefix len. Sec. wrt. k Resp. size (kB) Orac. H Preprocess time† Qry. time (ms) Eval. time (µs) Rec. time (µs)
16 bit 4 0.13 Sha256 1.55± 0.02 sec. 0.38± 5×10−3

41.33± 0.08 391.98± 0.93
8 bit 977 30.53 Argon2∗ 1.27± 0.03 hour 147.29± 4.26

∗ To deliberately slow down user queries, we use sequential Argon2id with memory set to 4 MB, time cost (working factor) set to 3.
† This operation is evaluated with parallel computing (8 cores fully utilized) to simulate actual usage scenarios during server deployment.

〈M,A,∑, (UM, UA)〉, where M represents the society, A
represents the coercers,

∑
is the set of strategy profiles,

and UM and UA are utility functions of the corresponding
player. Note that cryptocurrencies can be regarded as the
payoffs of the above-defined utility functions. The strategy∑

=
∑
M×

∑
A comes with the ingredients defined below.

Strategies. M’s strategy is to prevent bribing and colluding
among shareholders. Denote a list of protection methods
that could be adopted by M as

∑
M = {ψ0, · · · , ψmax}.

In contrast, A’s strategy is to coerce shareholders so as to
alter the evaluation results. The strategy is thus given as∑
A = {0, · · · , k∗, · · · , k}, where the minimal number of

shareholders required for the change the result of evaluation
in favor of coercers is k∗, which we also refer to as thresh .
Note we assume the value of k∗ is public knowledge deducible
from public information recorded on the blockchain.
Preferences. Because in our considered scenario, the strategies
of M are pre-determined and recorded on the blockchain, we
can simply assume only pure strategies are played, i.e., both
parties will not randomize their strategy play. With that said,
the preferences of these pure strategies can be represented
by utility functions. Denote the utility of the society M as
UM(ψj , n) = VM(Oracle(ψj , n)) − CM(ψj), where UM
is affected by both the protection mechanism ψj and the
number of shareholders n that A attempts to coerce. This is
because UM is primarily comprised of the social value of the
evaluation results VM, which naturally stems from Oracle,
outputting the outcome of the decentralized evaluation result.
As we also assume a binary result in Equation 1, we can
denote the social value to M as cM, when the result is fairly
derived. In contrast, the social value is cM− εM. Aside from
social value, the utility should also deduct the implementation
cost of the protection methods ψ, which we denote as CM(·).

Similarly, the utility function of the coercer A is then
UA(ψj , n) = VA(Oracle(ψj , n))−n·CA(ψj). The social value
to A is different from M, which we use the function VA to
measure. Consequently, we denote the value to A as cA, given
the favoured result; and cA−εA otherwise. Note that this time
the coercion costs grow with the number of shareholders that
should be controlled by A, as we neglect the constant cost to
overcome the protection method ψ.
Implications. Before drawing a conclusion, we share some
useful insights from the perspective of A. Firstly, as M
progressively changes the protection method from ψ0 to ψmax,
it is desirable that it becomes much more costly forA to coerce
the same number of shareholders. Namely, CM(ψj) should
be far smaller than n ·CA(ψj) with a suitable value of j. We
practice this by anonymizing the shareholders and intermediate
results with cheap on-chain verification operations. Secondly,

it is straightforward to see A has two undominated strategies,
namely 0 and k∗, depending on how M may play. In other
words, it only makes sense for rational A to coerce none or
k∗ shareholders. Formally, for a given ψ, if cA −CA(ψ) ∗ k∗
is smaller than cA− εA, then A is incentivized not to coerce.
Hence, we have incorporated randomized yet publicly verifi-
able shareholder selection procedures from a sufficiently large
pool of candidates to increase k∗ required forA to successfully
coerce. Interestingly, the undominated strategy of coercing k∗

shareholders can be seen as Stackelberg equilibrium, assuming
the “leader” M chooses its strategy in advance and commits
to it. In our application scenario, the commitment is partially
guaranteed with the on-chain workflows that are publicly
verifiable, under the majority good assumption.

VI. IMPLEMENTATION AND EVALUATION

A. Prototype implementation
We develop a core module for ordinary users to securely

query whether a blockchain address resides within a target
blocklist. The OPRF protocol described in Section IV-B is
efficiently instantiated with groups over elliptic curves [43].
Due to Rust’s near-native performance, rich security mecha-
nisms and cross-compilation abilities, we implement the OPRF
protocol with a Rust library [44] that operates upon the prime-
order Ristretto group [45] over the curve 25519. We also
rely on the slow hash function Argon2 [46] to instantiate
an inefficient oracle to defend DoS attacks. This module can
be directly deployed over any existing blockchain transaction
system with open-sourced blocklists query services deployed.

To facilitate the use of high-quality blocklists, we simulate
the API for actions with regard to quality evaluation through a
decentralized committee. Conveniently, we use the same Rust
library [44] to implement the commitment scheme and zero
knowledge proofs depicted in Section V-C.
Dataset. In order to simulate the real-world deployment set-
tings, it is crucial to understand how the scale of blocklists
affects our design. In light of this, we collect public datasets
for widely used cryptocurrency platforms, including Bitcoin,
Ethereum, and Ripple. Notably, most of the entries are from
Bitcoin Abuse Database Index [11] and CryptoScamDB [12].
After duplication, we derive around 243, 000 unique entries.
Experiment setup. With respect to the above prototypes, we
evaluate the performance as well as the overall cost, and obtain
average results out of 100 measurements. We set the size of
the finite field F to 256 bit and use the GMP library [47] to
implement big integer for efficiency. This will suit the Ristretto
group we use, where a point on the curve 25519 yields 32
bytes after compression. As a result, a group element in both
the commitment and the NIZK protocol is 32 bytes.

0.1 0.3 1 3 10

Percentage of unsafe addresses (%)

0

2

4

6

#
o
f

re
q
u

e
st

s
(/

s)

×105

1 thread

2 threads

4 threads

8 threads

0.1 0.3 1 3 10

Percentage of unsafe addresses (%)

0

1

2

3

#
o
f

re
q
u

e
st

s
(/

s)

×105

1 MB/s BD.

2 MB/s BD.

5 MB/s BD.

10 MB/s BD.

Fig. 6: Max concurrent requests allowed under various percentages. Left: CPU
usage is a major constraint with a 3-bit prefix length. Right: Bandwidth is a
more crucial factor with stronger security guarantees and 4-bit prefix length.

To simulate a real server, the deployment environment uses
an eight-core Intel E-2174G (3.8 GHz) processor with 32 GB
RAM. Compared to the desktop, the mobile end is more often
a bottleneck. Hence, we carefully installed the application
natively compiled and linked (Android NDK toolchains) from
Rust, on the latest aarch64-linux-android platform with quad-
core 2.35 GHz CPU and 6 GB RAM. Lastly, to enable
efficient on-chain operations, we compile from reusable Rust
modules to WebAssembly [48] binary. For its cross-platform
interoperability, we deploy it to our private testnet with the
support of Turing-complete Ethereum smart contract [49].

B. Evaluation on secure blocklist query

Efficient protection on users. Our evaluation results confirm
the efficiency of our secure blocklist query protocol elaborated
in Section IV-B. We hence prepare Table I to demonstrate
the detailed communication and computational overhead under
various useful settings. We first show two common security
settings. For a 16-bit prefix match setting, a user query
can be hidden among four indistinguishable queries. Because
the response size accounts for most of the communication
overhead, we only display its concrete figure in the table. We
can see the communication overhead for this setting is almost
negligible. We stress this figure grows linearly with the value
of k. As a result, for a stronger security setting with a 8-bit
prefix, the response size expands significantly.

Apart from query privacy, our design is also able to defend
against DoS attacks, which commonly target valuable query
services, with a bearable amount of preprocessing overhead.
In Table I, we also show a full comparison between a normal
oracle H and an inefficient oracle initialized with a customized
slow hash function. Most of the perceivable overhead attributes
to the blocklist preprocessing procedures conducted on the
server end. Despite hours of computational efforts, it can
be configured flexibly with the underlying slow function.
Whereas on the user end, only the query time is deliberately
slowed down for DoS defense. Notably, operations regarding
‘oblivious computation’ introduce little overhead even on the
mobile end (at the magnitude of milliseconds).
Scalable service providers. Our lightweight design also en-
ables a service provider to serve a large number of users at a
relatively low cost. In our experiments, we test the number of
concurrent requests allowed with a single server and further
estimate the scalability of our design. Specifically, the test is
conducted using the Jmeter [50] toolset. By distributing and

5 7 9 11 13

of shareholder voters

0

10

20

P
ro

v
e

ti
m

e
(m

s) R1

R1∗
R2

R2∗

5 7 9 11 13

of shareholder voters

0

10

20

V
e
ri

fy
ti

m
e

(m
s) R1

R2

Post

Fig. 7: Computational overhead w.r.t. number of voters. Left: Proving time for
native operations of two rounds (R1, R2), and NIZK operations (R1∗, R2∗).
Right: Verification time for two rounds and the post-aggregation procedures.

7.0 7.2 7.4 7.6

Verification time (ms)

0.00

0.25

0.50

0.75

1.00

C
D

F

1.0 1.5

DLP solving time (ms)

0.00

0.25

0.50

0.75

1.00

C
D

F

Fig. 8: Varying on-chain operation time. Left: Verification time for different
shareholders due to computation of Y . Right: Recovery time of vote consensus
by solving a small-exponent elliptic curve discrete logarithm problem.

synchronizing a prefix list from time to time, as we suggest
in the design, a service provider can lift the vast majority of
online interaction, thus greatly improving service scalability.

The remaining question thus becomes: what’s the percent-
age of the queries that eventually require online interaction?
As the answer depends on the quality and coverage of a given
blocklist, we estimate it with five sets of candidate settings in
Fig. 6. The center point is set to 1%, which is in accord with
the ratio of the size of our collected blocklist to all existing
Bitcoin addresses. Our general observation is that aside from
the factor of computation bottleneck, the throughput is also
affected by the server bandwidth. Notably, bandwidth is a more
crucial constraint when the prefix length bit is set to four.

C. Performance of decentralized quality evaluation

We now measure computational and communication over-
head incurred by homomorphic commitments and NIZK for
quality evaluation. Based on that, we proceed to estimate
concrete costs brought by blockchain-enabled verification.
Protocol efficiency. To understand what overhead a share-
holder needs to take during the participation of the voting
procedures, we estimate the concrete proving time for both
two rounds on the mobile platform. On the other hand, the
verification procedures are carried out in the aforementioned
server environment. The results are presented in Fig. 7, where
we vary the range of the voter number N and break down the
detailed computational cost in terms of its serving purposes.

As shown, the NIZK proof generation procedures, which
is used to attest to the correctness of computation, accounts
for the majority of the overhead. In addition, as both the
prover and the verifier need to compute Y to aggregate others’
opinion in the second round, the required time grows linearly
with the number of N . The other operation that also increases
with the growth of N is the post-aggregation procedures after
each of the proofs submitted by shareholder voters is verified.

Aside from the above averaged results, it is also noteworthy

5 7 9 11 13 15 17 19

of shareholder voters

10

20

30

S
iz

e
(k

B
)

100%

120%

150%

200%

5 7 9 11 13 15 17 19

of shareholder voters

0.6

0.8

1.0

1.2

1.4

A
v
e
ra

g
e

g
a
s
×

1
0

6 100%

120%

150%

200%

Fig. 9: On-chain cost grows with the number of voters. Label percentage is the
ratio of thresh over N (num. of voters) in the first round. Left: Compulsory
proof size stored on blockchain. Right: Converted Ethereum gas cost.

TABLE II: Estimated on-chain cost undertaken by each shareholder

of shareholder voters 5 7 9 11
Cost (USD) 16.02 16.28 16.54 16.80

that the verification time would also change, given N is fixed
beforehand. This is because the computation of Y requires
different runs of modulo inverse operations. The same also
works for the time of solving a DLP problem to obtain the
vote result during the post-aggregation procedures. In light
of this, we plot Fig. 9 to demonstrate cumulative distribution
function (CDF) for these two scenarios.
Decentralization costs. To accurately model the explicit
cost of decentralized verification enabled by blockchain, we
hereby analyze the detailed on-chain costs using the general-
purpose Ethereum platform. We stress the costs could be
further reduced in deployment through off-chain state channel
designs but we regard them as orthogonal efforts. Our on-chain
procedures implicitly require each shareholder to pay for both
storage and computational costs. The primary portion of the
cost stems from on-chain storage needs for submitted proofs.
In the left subfigure of Fig. 9, we demonstrate the total amount
of storage proofs to be stored on the blockchain. The growth
of this total size is affected by both thresh and N .

In addition to storage cost, we also estimate the amount
of computation cost by converting the above-obtained verifi-
cation time to a comparable baseline. Specifically, we apply
the assumption that 1 gas equals 0.1 µs of CPU execution
on pre-determined hardware, as suggested by the Ethereum
WebAssembly proposal [49]. Because all the verification op-
erations can be executed within 100 ms, they can easily be
attached to a single block without any additional overhead. To
aggregate the storage cost and the estimated computation cost,
we obtain the right subfigure of Fig. 9.

Finally, according to Ethereum gas calculator [51] (using
11.8 Gwei gas price), we estimate the total explicit cost for
each shareholder to complete full procedures of decentralized
evaluation upon a proposal requested by a single blocklist
service provider. The results are demonstrated in Table II. As a
comparison, the average transaction amount once reached $70
in early 2022, which makes the overall cost each shareholder
needs to undertake quite reasonable.

VII. RELATED WORK

To the best of our knowledge, all existing blocklists tar-
geted for cryptocurrency provide very limited user privacy
protection, if any. In addition, the sensitive query services they

provide are essentially non-transparent and highly centralized.
Nonetheless, we identify notable works closely related to ours.
Privacy-preserving data query. Private Information Retrieval
(PIR) [29], [52] is a cryptographic protocol that eliminates the
chance for a server to learn which items were retrieved by a
user from a specified position in a database. To get rid of
the assumption that users are knowledgeable about the indices
of desired items, Private Keyword Search (PKS) [35] is later
proposed. Typical ways to construct PKS include the use of
polynomial oblivious evaluation [25] and multiparty compu-
tations [53]. However, they are highly inefficient for our type
of usage scenarios [33]. In contrast, our work targets different
security settings, resulting in much better performance.
Decentralized governance. Decentralized autonomous orga-
nizations (DAO) [17] have been widely adopted in the industry.
It allows participants to collaboratively reach a consensus with
verifiability. In academia, a few works [54]–[57] have also
proposed similar blockchain-based e-voting designs over the
years. However, most of the constructions partially protect the
privacy and anonymity of voters. Additionally, they also do
not consider coercion and cost-effective countermeasures.
Decentralized private computation. Numerous works have
studied the privacy problems of blockchain-enabled appli-
cations. Earlier research efforts focus on providing generic
frameworks [58]–[61] to realize private payments via
anonymity sets. Notably, these designs and our decentralized
evaluation procedures are highly complementary, as it is de-
sirable for our solution to also enable privacy transactions for
shareholders to deposit and withdraw money. Beyond private
payments, follow-up works like Hawk [62] and Zether [18]
extend the core idea behind Zerocash [58] to protect private
data inputs of applications. Lately, ZEXE [63] further provides
a means to hide computation. Compare to these generic
frameworks built on zero knowledge succinct non-interactive
argument of knowledge (zk-snark) [20]–[23], our customized
NIZK protocols have clear performance advantages.

VIII. CONCLUSION

In light of the growing cybercrimes in the decentralized
space, we present a suite of solutions to enhance the current
paradigm of cryptocurrency blocklists. By a careful consolida-
tion of the query procedures and quality evaluation procedures
with customized designs, our proposed schemes improve both
the security and effectiveness of cryptocurrency blocklist ser-
vices with bearable on-chain costs. We hope this work will be
beneficial to cryptocurrency users and to the wider adoption
of secure and high-quality cryptocurrency blocklist services.

ACKNOWLEDGEMENTS

This work was fully supported by the Research Grants
Council of Hong Kong under Grant CityU 11217819,
11217620, 11218521, N CityU139/21, R6021-20F, RFS2122-
1S04, and also by Shenzhen Municipality Science
and Technology Innovation Commission (grant number
SGDX20201103093004019, CityU), as well as the National
Natural Science Foundation of China under Grants 61572412.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system.” https:
//bitcoin.org/bitcoin.pdf, 2008.

[2] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger.” https://gavwood.com/paper.pdf, 2014.

[3] J. Wu, Q. Yuan, D. Lin, W. You, W. Chen, C. Chen, and Z. Zheng, “Who
are the phishers? phishing scam detection on ethereum via network
embedding,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 2020.

[4] M. Bartoletti, B. Pes, and S. Serusi, “Data mining for detecting bitcoin
ponzi schemes,” in Proc. of CVCBT, 2018.

[5] W. Chen, Z. Zheng, E. C. Ngai, P. Zheng, and Y. Zhou, “Exploiting
blockchain data to detect smart ponzi schemes on ethereum,” IEEE
Access, vol. 7, pp. 37575–37586, 2019.

[6] M. Bartoletti, S. Carta, T. Cimoli, and R. Saia, “Dissecting ponzi
schemes on ethereum: Identification, analysis, and impact,” Future
Gener. Comput. Syst., vol. 102, pp. 259–277, 2020.

[7] Chainalysis, “The 2021 crypto crime report.” https://go.chainalysis.com/
rs/503-FAP-074/images/Chainalysis-Crypto-Crime-2021.pdf, 2021.

[8] P. Prakash, M. Kumar, R. R. Kompella, and M. Gupta, “Phishnet: Pre-
dictive blacklisting to detect phishing attacks,” in Proc. of INFOCOM,
2010.

[9] A. Le, A. Markopoulou, and M. Faloutsos, “Phishdef: URL names say
it all,” in Proc. of INFOCOM, 2011.

[10] “Google Safe Browsing.” https://safebrowsing.google.com, 2021.
[11] BitcoinAbuse, “Bitcoin abuse database index.” https://www.

bitcoinabuse.com/reports, 2021.
[12] CryptoScamDB, “Cryptoscamdb: open-source dataset tracks malicious

urls and their associated addresses.” https://api.cryptoscamdb.org/v1/
addresses, 2021.

[13] Bellingcat, “Cryptosint.” https://www.bellingcat.com/?s=crypto, 2022.
[14] S. Ramanathan, J. Mirkovic, and M. Yu, “BLAG: improving the accuracy

of blacklists,” in Proc. of NDSS, 2020.
[15] G. Tsoukalas and B. H. Falk, “Token-weighted crowdsourcing,” Manag.

Sci., vol. 66, no. 9, pp. 3843–3859, 2020.
[16] ConsenSys, “Partial lock commit reveal voting system that utilizes erc20

tokens.” https://github.com/ConsenSys/PLCRVoting, 2018.
[17] Ethereum.org, “Decentralized autonomous organisations (daos).” https:

//ethereum.org/en/dao/, 2018.
[18] B. Bünz, S. Agrawal, M. Zamani, and D. Boneh, “Zether: Towards

privacy in a smart contract world,” in Proc. of FC, 2020.
[19] E. C. Crites, M. Maller, S. Meiklejohn, and R. Mercer, “Reputable list

curation from decentralized voting,” Proc. of PETS, vol. 2020, no. 4,
pp. 297–320, 2020.

[20] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly
practical verifiable computation,” in Proc. of IEEE S&P, 2013.

[21] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza, “Snarks
for c: Verifying program executions succinctly and in zero knowledge,”
in Proc. of CRYPTO, 2013.

[22] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-
interactive zero knowledge for a von neumann architecture,” in Proc. of
USENIX Security, 2014.

[23] J. Groth, “On the size of pairing-based non-interactive arguments,” in
Proc. of EUROCRYPT, 2016.

[24] M. Naor and O. Reingold, “Number-theoretic constructions of efficient
pseudo-random functions,” in Proc. of FOCS, 1997.

[25] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold, “Keyword search
and oblivious pseudorandom functions,” in Proc. of TCC, 2005.

[26] M. Naor, “Bit commitment using pseudo-randomness,” in Proc. of
CRYPTO, 1989.

[27] M. Bellare and O. Goldreich, “On defining proofs of knowledge,” in
Proc. of CRYPTO, 1992.

[28] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to
identification and signature problems,” in Proc. of CRYPTO, 1986.

[29] E. Kushilevitz and R. Ostrovsky, “Replication is NOT needed: SINGLE
database, computationally-private information retrieval,” in Proc. of
FOCS, 1997.

[30] B. Pinkas, T. Schneider, and M. Zohner, “Faster private set intersection
based on OT extension,” in Proc. of USENIX Security, 2014.

[31] L. Li, B. Pal, J. Ali, N. Sullivan, R. Chatterjee, and T. Ristenpart,
“Protocols for checking compromised credentials,” in Proc. of ACM
CCS, 2019.

[32] L. Sweeney, “k-anonymity: A model for protecting privacy,” Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
vol. 10, no. 5, pp. 557–570, 2002.

[33] H. Cui, Y. Zhou, C. Wang, X. Wang, Y. Du, and Q. Wang, “PPSB: An
open and flexible platform for privacy-preserving safe browsing,” IEEE
Trans. on Dependable and Secure Computing, 2019.

[34] K. Thomas, J. Pullman, K. Yeo, A. Raghunathan, P. G. Kelley, L. Inv-
ernizzi, B. Benko, T. Pietraszek, S. Patel, D. Boneh, and E. Bursztein,
“Protecting accounts from credential stuffing with password breach
alerting,” in Proc. of USENIX Security, 2019.

[35] Y. Chang and M. Mitzenmacher, “Privacy preserving keyword searches
on remote encrypted data,” in Proc. of ACNS, 2005.

[36] “Phishtank.” https://www.phishtank.com, 2021.
[37] A. Asgaonkar and B. Krishnamachari, “Token curated registries - a game

theoretic approach,” 2018.
[38] randao.org, “Randao: A dao working as rng of ethereum.” https://github.

com/randao/randao, 2016.
[39] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum

smart contracts (sok),” in Proc. of POST, 2017.
[40] H. S. Galal and A. M. Youssef, “Verifiable sealed-bid auction on the

ethereum blockchain,” in Proc. of FC, 2018.
[41] F. Hao, P. Y. A. Ryan, and P. Zielinski, “Anonymous voting by two-

round public discussion,” IET Inf. Secur., vol. 4, no. 2, pp. 62–67, 2010.
[42] Y. Dodis and A. Yampolskiy, “A verifiable random function with short

proofs and keys,” in Proc. of PKC, 2005.
[43] J. Burns, D. Moore, K. Ray, R. Speers, and B. Vohaska, “Ec-oprf:

Oblivious pseudorandom functions using elliptic curves.” Cryptology
ePrint Archive, Report 2017/111, 2017.

[44] “Rust implementation of group operations on ristretto and curve25519.”
https://github.com/dalek-cryptography/curve25519-dalek, 2021.

[45] M. Hamburg, “The ristretto group.” https://ristretto.group/, 2021.
[46] A. Biryukov, D. Dinu, and D. Khovratovich, “Argon2: New generation

of memory-hard functions for password hashing and other applications,”
in Proc. of EuroS&P, 2016.

[47] F. S. Foundation, “The gnu multiple precision arithmetic library.” https:
//gmplib.org/, 2021.

[48] “Webassembly (abbreviated wasm) is a binary instruction format for a
stack-based virtual machine.” https://webassembly.org/, 2021.

[49] “Ethereum webassembly (ewasm).” https://ewasm.readthedocs.io/en/
mkdocs/, 2021.

[50] “Apache jmeter.” https://jmeter.apache.org/, 2021.
[51] “Eth gas station.” https://ethgasstation.info/calculatorTxV.php, 2021.
[52] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private informa-

tion retrieval,” J. ACM, vol. 45, no. 6, pp. 965–981, 1998.
[53] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S. G. Choi,

W. George, A. D. Keromytis, and S. M. Bellovin, “Blind seer: A scalable
private DBMS,” in Proc. of IEEE S&P, 2014.

[54] K. Lee, J. I. James, T. G. Ejeta, and H. J. Kim, “Electronic voting
service using block-chain,” J. Digit. Forensics Secur. Law, vol. 11, no. 2,
pp. 123–136, 2016.

[55] S. Bistarelli, M. Mantilacci, P. Santancini, and F. Santini, “An end-to-end
voting-system based on bitcoin,” in Proc. of SAC, 2017.

[56] M. A. Azad, S. Bag, and F. Hao, “Privbox: Verifiable decentralized
reputation system for online marketplaces,” Future Gener. Comput. Syst.,
vol. 89, pp. 44–57, 2018.

[57] B. Zhang, R. Oliynykov, and H. Balogun, “A treasury system for
cryptocurrencies: Enabling better collaborative intelligence,” in Proc. of
NDSS, 2019.

[58] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments from
bitcoin,” in Proc. of IEEE S&P, 2014.

[59] E. Cecchetti, F. Zhang, Y. Ji, A. E. Kosba, A. Juels, and E. Shi, “Solidus:
Confidential distributed ledger transactions via PVORM,” in Proc. of
ACM CCS, 2017.

[60] N. Narula, W. Vasquez, and M. Virza, “zkledger: Privacy-preserving
auditing for distributed ledgers,” in Proc. of USENIX NSDI, 2018.

[61] S. Noether and B. Goodell, “Triptych: Logarithmic-sized linkable ring
signatures with applications,” in Proc. of ESORICS, 2020.

[62] A. E. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in Proc. of IEEE S&P, 2016.

[63] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H. Wu, “ZEXE:
enabling decentralized private computation,” in Proc. of IEEE S&P,
2020.

