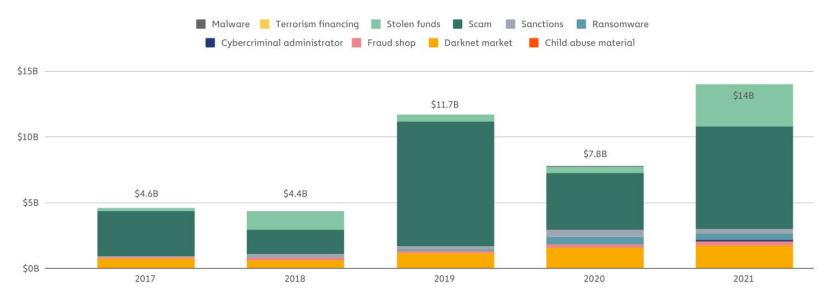
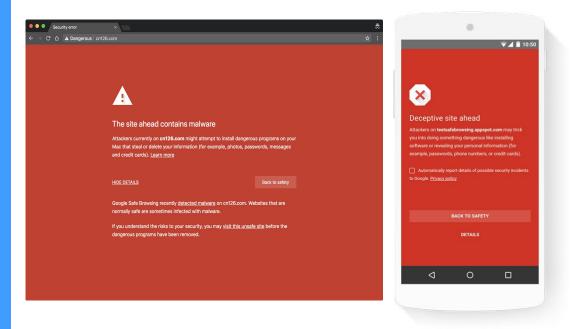
Enhancing Cryptocurrency Blocklisting:

A Secure, Trustless, and Effective Realization


Yuefeng Du, Anxin Zhou, Cong Wang

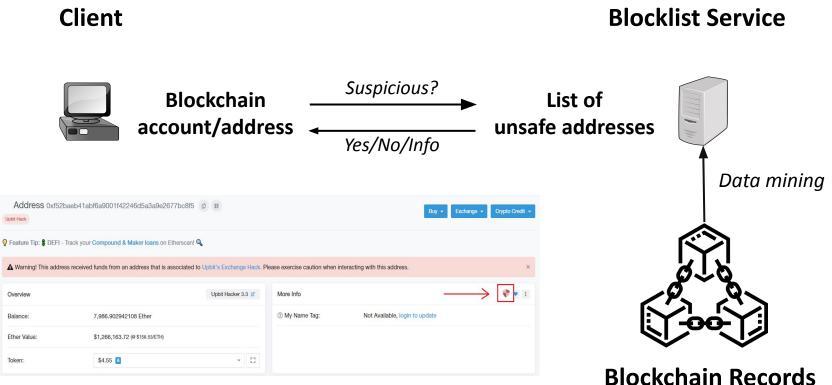
City University of Hong Kong

Prevalent Cryptocurrency Crimes

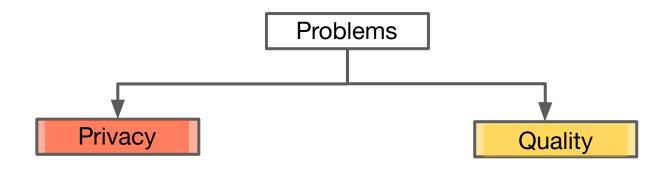

Total cryptocurrency value received by illicit addresses | 2017-2021

Note: "Cybercriminal administrator" refers to addresses that have been attributed to individuals connected to a cybercriminal organization, such as a darknet market.

Figure taken from The 2022 Crypto Crime Report, Chainalysis


Safe Browsing: URL Blocklisting

Block malware or phishing


- Chrome, Firefox, Safari ...
- 4 billions devices

Safe Transaction: Cryptocurrency Blocklisting

ETHProtect warns Etherscan users of phishing, scams, and hacks.

Problems with Cryptocurrency Blocklisting

Problem #1: Privacy

- Blocklist service providers see sensitive user queries in the clear
 - Facilitate data collection & user profiling
 - Leak user intention (e.g., frontrunning attacks, forcing up tx fee, DoS)

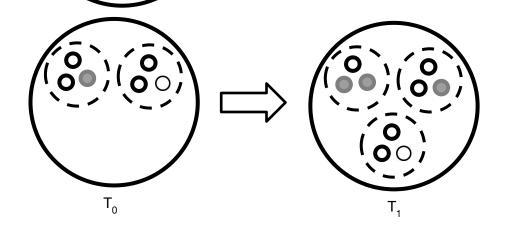
Problem #1: Privacy

- Blocklist service providers see sensitive user queries in the clear
 - Facilitate data collection & user profiling
 - Leak user intention (e.g., frontrunning attacks, forcing up tx fee, DoS)
- Blocklists are proprietary assets by the service providers
 - Should avoid disclosure to unauthorized parties

Problem #1: Privacy

- Blocklist servers see sensitive user queries in the clear
 - Facilitate data collection user profiling

Goal: Enable privacy-preserving blocklist queries for cryptocurrency addresses


Q: Transaction Action:	» Remove 2,193,612,748.362.96682664463661133 @ SHIB And 13,291.133543744333306011 Ether Liquidity From 🖏 Uniswap V2					
@ From:	0xab5801a7d398351b8be11c439e05c5b3259aec9b (V℃)					
⑦ Interacted With (To):	Q. Contract 0x7a250d563094cf539739df2c5dacb4c659f2488d (Uniswap V2: Router 2)					
⑦ Tokens Transferred: (5)	• From Vb To Uniswap V2: SHIB For 70.356.236.397351443318483451 (\$187,491,752.73) Uniswap V2 (UNI-V2)					
	From Uniswap V2: SHIB To Null Address: 0x00 For 70,356,236.397351443318483451 (\$187,491,752,73) Uniswap V2 (UNI-V2)					
	• From Uniswap V2: SHIB To Uniswap V2: Rout For 2,193,612,748,362,96682864463661133 (\$24,063,931.85) SHIBA INU (SHIB)					
	> From Uniswap V2: SHIB To Uniswap V2. Rout For 13,291.133543744333308011 (\$24,243,957.96) 🔂 Wrapped Ethe (WETH)					
	From Uniswap V2: Rout To Vb For 2,193,612,748,362,96682864463661133 (324,083,931.85) SHIBA INU (SHIB)					

Problem #2: Quality

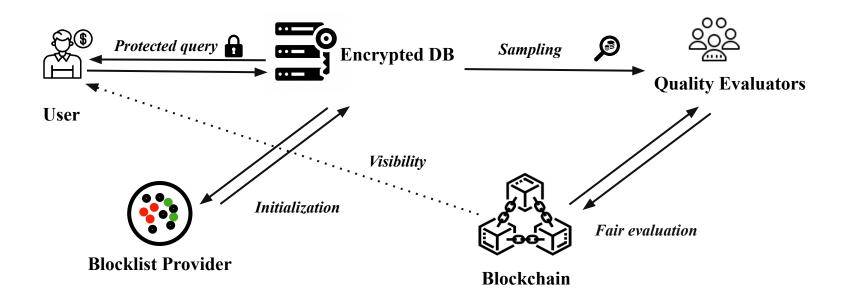
Real threats unrecognized unintendedly /deliberately

Safe addresses mis-identified as dangerous ones.

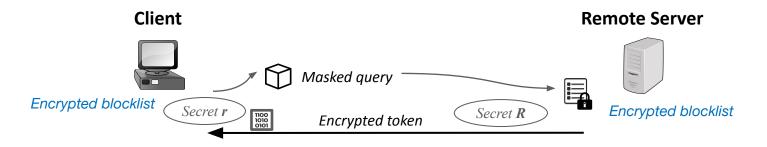
- Blocklists can be
 Diverse
 - Inaccurate [1]
 - Evolving [2]

 BLAG: Improving the Accuracy of Blacklists, Ramanathan et al., In Proc. of NDSS, 2020.
 Blocklist babel: On the transparency and dynamics of open source blocklisting, Feal et al., IEEE Trans. Netw. Serv. Manag. 18(2), 2021

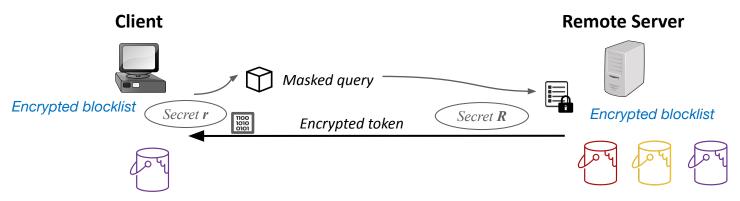
Problem #2: Quality


Real threats unrecognized unintendedly /deliberately Blocklists can be
 Inconsistent

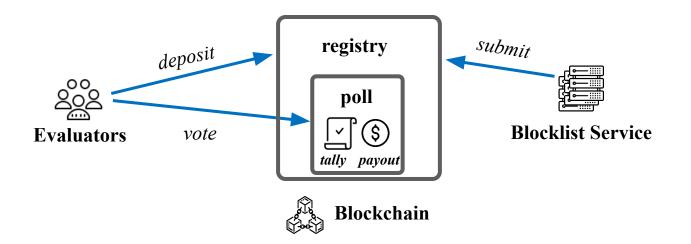
Goal: Ensure high-quality blocklist services with a proper quality evaluation mechanism


 BLAG: Improving the Accuracy of Blacklists, Ramanathan et al., In Proc. of NDSS, 2020.
 Blocklist babel: On the transparency and dynamics of open source blocklisting, Feal et al. IEEE Trans. Netw. Serv. Manag. 18(2), 2021

Our architecture

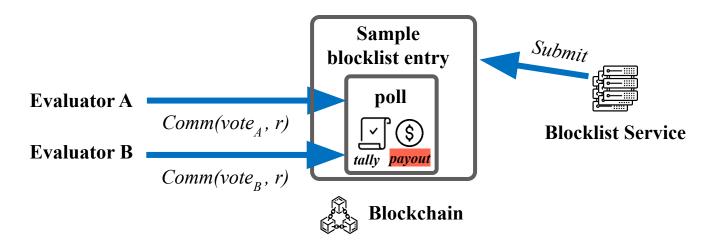

- Decoupling the curation and serving of blocklists
- Decentralized evaluation of blocklist quality

Addressing Problem #1: Private Query


- · Goal: same query complexity as the existing blocklist services
 - One round-trip per query, precluding the hefty crypto primitives like PIR
- · We propose to store an encrypted (and searchable) blocklist at the client side
 - Client asks server for authorised search tokens

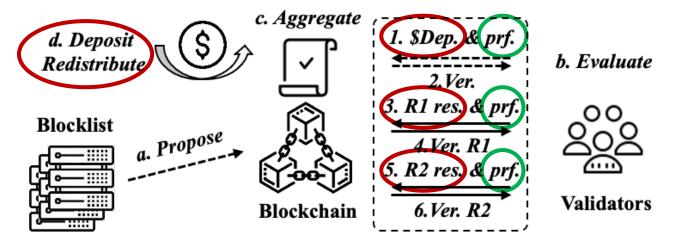
Addressing Problem #1: Private Query

- Goal: same query complexity as the existing blocklist services
 - One round-trip per query, precluding the hefty crypto primitives like PIR
- · We propose to store an encrypted (and searchable) blocklist at the client side
 - Client asks server for authorised search tokens
- Further enhancement:
 - Use bucketization for large list; more friendly for fresh update


Addressing Problem #2: Decentralized Fair Blocklist Evaluation

- Inspired by Token Curated Registry (TCR) [1]
 - "Stake, and then vote for what you will use"
 - Vote weight proportional to stake
 - Assumption: economically rational participants

[1] Token curated registries - a game theoretic approach, Asgaonkar et. al., arXiv, 2018.


Challenge: Fair Evaluation

- The existing TCR practice is known to produce unfair results:
 - Biased outcome due to revealing order [1]
 - Coercion out of economic incentives [2]

[1] SHARVOT: secret SHARe-based Voting on the blockchain, Bartolucci et. al., Proc. of ICSE, 2018. [2] Quadratic Voting in Blockchain Governance., Nicola Dimitri, *Information* 2022.

Resistance to Bias: Zero-Knowledge Evaluation

Vote & stake confidentiality is a must

- No disclosure of (intermediate) outcome, e.g., \$deposit, Round 1 & Round 2 results
- Low-cost public verification
 - Detect any behavior deviation with minimized on-chain costs

Resistance to Coercion

Coercion-resistant voting:

- Well studied in cooperative game theory, e.g., Stackelberg competition
- Goal: maximize the costs of coercion to disincentivize attacks

- Real-world incidents:
 - e.g., Dark DAO, Curve War

[1] Algorand: Scaling Byzantine Agreements for Cryptocurrencies, Gilad et.al., in Proc of SOSP, 2017

Resistance to Coercion: Cryptographic Sortition

- Real-world incidents:
 - e.g., Dark DAO, Curve War

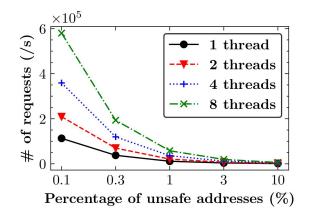
Coercion-resistant voting:

- Well studied in cooperative game theory, e.g., Stackelberg competition
- Goal: maximize the costs of coercion to disincentivize attacks
- We further extend the TCR design
 - Enlarge the candidate pool for evaluators
 - Secure random evaluator selection
 - Inspired by cryptographic sortition [1]
 - We adapt it to encrypted values

[1] Algorand: Scaling Byzantine Agreements for Cryptocurrencies, Gilad et.al., in Proc of SOSP, 2017

Evaluation Setup

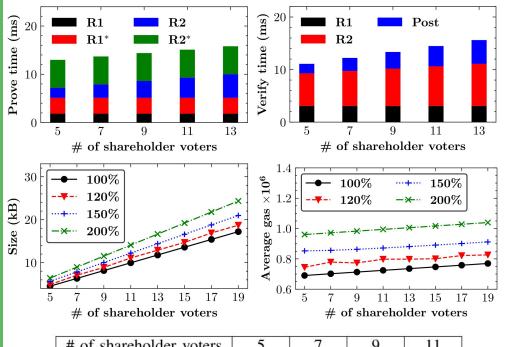
- Real-world blocklists (over 240,000 entries)
- Ethereum for decentralized blocklist evaluation
- 10-20 evaluators



Overhead of Private Query

Prefix len.	Sec. wrt. k	Resp. size (kB)		
16 bit	4	0.13		
8 bit	977	30.53		

	Preprocess time [†]	
Sha256	1.55 ± 0.02 sec.	$0.38\pm5{\times}10^{-3}$
Argon2*	1.27 ± 0.03 hour	147.29 ± 4.26



 Tunable security guarantees and communication overhead

Practical initialization and query cost

 Throughput is affected by %unsafe addresses

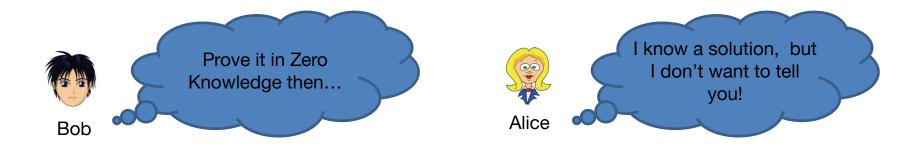
Costs of Blocklist Evaluation

# of shareholder voters	5	7	9	11
Cost (USD)	16.02	16.28	16.54	16.80

Estimated on-chain cost undertaken by each evaluator

- Off-chain computation time
- On-chain costs
 - Proof storage
 - Ethereum gas for on-chain verification
 - All linear to #evaluators

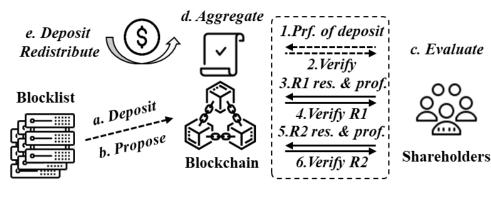
Concluding Remarks


- Two major problems in cryptocurrency blocklisting
 - No protection of sensitive queries
 - No (trustless) guarantee of blocklist quality
- Our solution raises the bar on privacy and security of this booming ecosystem

Concluding Remarks

- Two major problems in cryptocurrency blocklisting
 - No protection of sensitive queries
 - No (trustless) guarantee of blocklist quality
- Our solution raises the bar on privacy and security of this booming ecosystem

Commit-and-Prove Zero Knowledge Proof



Revealing nothing but the correctness of committed values

Partial vote confidentiality

Public verifiability

Construction Explained at a High Level

$$Q = \begin{cases} 1, & \sum_{i=0}^{n-1} \tau_i v_i > \frac{1}{2} \sum_{i=0}^{n-1} \tau_i \\ 0, & \sum_{i=0}^{n-1} \tau_i v_i \le \frac{1}{2} \sum_{i=0}^{n-1} \tau_i \end{cases}$$

We consider a scenario where only 1-bit outcome is revealed lastly.

Q is revealed by tally and decommit Y

Deposit:

$$r \leftarrow \$ F$$

$$C \leftarrow g^{\text{amount}}h^{\text{r}})$$

$$prf_{0} \leftarrow \text{NIZK.Prove}(R_{dep}, \text{ C}, \text{ r})$$

R1:

 $\operatorname{comm}_{0}, \operatorname{comm}_{1} \leftarrow (g^{r}, g^{\operatorname{vote}}h^{r})$ $\operatorname{prf}_{1} \leftarrow \operatorname{NIZK}.\operatorname{Prove}(R_{1}, \operatorname{comm}_{0}, r)$

 $\begin{array}{l} \textbf{R2:} \\ Y \leftarrow \prod_{i=0}^{p-1} comm_{i,0} / \prod_{i=p+1}^{N-1} comm_{i,0} \\ comm_2 \leftarrow g^{\text{vote }} Y^{r,0} / \prod_{i=p+1}^{N-1} comm_{i,0} \\ \textbf{prf}_2 \leftarrow \text{NIZK.Prove}(R_2, \text{ comm}_1, (\text{vote, } r)) \end{array}$

Note *p* is the number of voters.