
Towards Privacy-assured and Lightweight On-chain
Auditing of Decentralized Storage

Yuefeng Du∗‡, Huayi Duan∗‡, Anxin Zhou∗‡, Cong Wang∗‡, Man Ho Au†, and Qian Wang§
∗City University of Hong Kong, Hong Kong; †The University of Hong Kong, Hong Kong

‡CityU University of Hong Kong Shenzhen Research Institute, China; §Wuhan University, China

Abstract—How to audit outsourced data in centralized storage
like cloud is well-studied, but it is largely under-explored for the
rising decentralized storage network (DSN) that bodes well for
a billion-dollar market. To realize DSN as a usable service in a
fully decentralized manner, the blockchain comes in handy — to
record and verify audit trails in forms of proof of storage, and
based on that, to enforce fair payments with necessary dispute
resolution.

Leaving the audit trails on the blockchain offers transparency
and fairness, yet it 1) sacrifices privacy, as they may leak
information about the data under audit, and 2) overwhelms on-
chain resources, as they may be practically large in size and
expensive to verify. Prior auditing designs in centralized settings
are not directly applicable here. A handful of proposals targeting
DSN cannot satisfactorily address these issues either.

We present an auditing solution that addresses on-chain
privacy and efficiency, from a synergy of homomorphic linear
authenticators with polynomial commitments for succinct proofs,
and the sigma protocol for provable privacy. The solution results
in, per audit, 288-byte proof written to the blockchain, and
constant verification cost. It can sustain long-term operation and
easily scale to thousands of users on Ethereum.

I. INTRODUCTION

Within the past few decades, the cloud storage providers
have reshaped the data storage marketplace remarkably.
Though the business model of centralized data storage has
boomed related industries, the downside of centralism is that
this mode poses new security and privacy threats upon user
data. The cloud storage providers could peek at or even abuse
user data, as users essentially lose data custodian when they
outsource sensitive personal data. Moreover, centralism of data
storage profits merely a few storage providers in the cloud era,
leading to the phenomenon of market monopoly.

Alternatively, volunteer-based P2P storage systems, such as
Bittorrent [1] and IPFS [2], has pointed out a new direction
for data storage since the early 2000s. However, the robustness
and reliability of P2P storage systems could be a problem in
practice, as they are often abused for piracy and illegal content
sharing. The profound reason is that in such a system built on
volunteers, peer nodes may join and leave freely, without ever
worrying about the influence of either good or bad behaviours.

Fortunately, the take-off of blockchain technology [3], [4]
has risen conclusively and has been still rapidly evolving.
By harnessing the power of the blockchain, it demonstrates a
new approach to create an ecosystem of decentralized storage
with an incentive mechanism. Imagine we could have our P2P
storage system incentively enabled by the blockchain. On that

account, it would be possible to store personal data on such
an incentive-driven decentralized cloud storage system.

With a blockchain-enabled decentralized storage system, the
users would obtain stronger security guarantees in the sense
that the storage providers cannot learn data contents encrypted
at the user end. In addition, this system naturally provides an
opportunity to exploit tremendous amounts of underutilized
storage space and further benefit the public at large instead of
merely profiting a few cloud storage corporations.

It is worth mentioning that such a blockchain-enabled
decentralized storage system should not be regarded as a
replacement, but as a complement of the current cloud storage
services. Notably, it is even likely for the storage providers
to utilize the existing cloud-based CDN infrastructures, e.g.,
outsource to the cloud (as long as data is encrypted), to provide
high-quality service of caching and data retrieval. Under this
decentralized storage system, where the blockchain serves as
the backbone incentivizing system, we vision to offer a data
storage option benefiting all participants, especially for users
with sensitive data that requires stronger security guarantees
and storage providers with unused storage space to rent out.

A. Target problem

Consider a scenario where a user intends to back up his
or her photo collections off-site. Though the user does not
fully trust the cloud storage providers, the entrust to unknown
storage providers in the decentralized context seems even more
unreliable. Even with a robust incentive system that can punish
the wrongdoers, the user may never find out whether partial
data is lost until the time of data retrieval, which is utterly
inconvenient and costly. On the other hand, even if we assume
the user successfully captures the wrongdoers, how could the
blockchain assist in resolving this dispute, and what evidence
should serve as the sole and final judging criterion?

To summarize the core problem, we lack a effective yet
low-cost storage auditing system and also a fair dispute res-
olution mechanism for the blockchain-enabled decentralized
storage system. Straightforwardly, in the pursuit of lightweight
auditing, the participants can depend on off-chain auditing.
Nonetheless, it introduces additional trust assumptions and
eventually requires the blockchain to resolve disputes. There-
fore, as a starting effort, we assume that all of auditing work
is carried out with on-chain functionalities.
Challenges. Designing and deploying a workable prototype
could be challenging due to the following factors. Firstly, we

have to deal with the tension between the privacy concerns
and the transparency property of the blockchain. According
to the recent interpretation of the GDPR [5], [6], it is recom-
mended to limit the amount of personal data (even encrypted)
on the blockchain in case of future breaches. In the case
of blockchain-enabled auditing, putting insecure proofs onto
the blockchain may give the adversaries an opportunity to
recover the original data contents off-line in a brutal-force
manner, especially when standard deduplication techniques
(deterministic encryption) are commonly applied to storage
services. Secondly, aside from the privacy concerns, another
challenge is to design the auditing protocol with succinct
proofs and quick verification. This matters significantly to
the cost-effectiveness and even the scalability of the entire
decentralized storage system, considering the cost on the
blockchain amortized to all miners. In addition, minimizing
the amount of work on the side of data owner as well as the
overhead brought to the storage provider is also vital to the
practical deployment of our system.
Remarks. As a starting effort, we focus on the specific appli-
cation case of personal and enterprise archive data storage.
Once data is distributed and archived, there would be no
more update of data. The market of archive storage alone
boasts great potential, including some of the most popular
usage scenarios such as file collection archiving and image
backups. From another perspective, most blockchain-enabled
storage systems, e.g., Storj [7], Siacoin [8], Filecoin [9], do
not support dynamic data update. Our proposed design would
undoubtedly be comparable in the settings of decentralized
archive data storage.

B. Our contributions

To the best of our knowledge, our blockchain-enabled
auditing framework is the first to address on-chain privacy
concerns and on-chain efficiency considerations. Specifically,
we make the following contributions.
• We analyze the current practices of decentralized archive

storage systems and identify the key problems that hinder
their further development.

• We propose the first pragmatic data auditing protocol
with on-chain privacy and efficiency for the decentralized
storage paradigm. Whilst achieving on-chain privacy, we
manage to cut down the on-chain auditing cost to merely
0.1$ per audit per storage provider.

• We conduct comprehensive performance evaluation to
show our design also accomplishes off-chain efficiency
and would remain reliable and robust, even when scaling
up to thousands of users.

To summarize, our design of auditing makes the decentralized
archive storage comparable to cloud storage solutions in terms
of both cost and effectiveness.

II. BACKGROUND

In this section, we perform a thorough analysis on existing
DSN designs. See Table I for an overview.

TABLE I: Comparison of auditing-related features for
frameworks that can support decentralized storage.

w.o. audit w. Merkle tree w. SNARK-based

IPFSSwarmStorjMaidSafe Sia FilecoinZKCSPHawk

Class P2P EC ALT ALT ALT ALT BC EC
Incentive

Audit mode N/A TTP TTP TTP BC PA PA BC
Storage Guar. N/A Low Low Low Low High High N/P
On-chain Sec.

Prover eff.
Auditor eff.

a indicates the feature is not considered by design; means the
feature is fully supported by design; N/A stands for non-applicable
feature; N/P means the feature may be supported but not specified.
b Class: classified according to different categories, P2P or

Ethereum-compatible (EC) or Bitcoin-compatible (BC) or Alter-
coin (ALT). We consider Ethereum-based auditing solution is more
universal for its concept of generic smart contracts; Bitcoin-based
auditing solution is compatible with Ethereum platform, though a
very limited amount of computation can be done on the blockchain;
while Altercoin design cannot be used in other cases.
c Audit mode: TTP stands for trusted third party; BC indicates

blockchain-enable auditing; PA stands for private auditing; Filecoin
claims the data owner can act as the auditor [9].
d Storage guarantees: Naive Merkle-tree based auditing can only

provide limited storage guarantees, as the challenge randomness
would eventually run out and the prover may reuse the challenged
blocks; Leveraging the recursive composite SNARK [9], Filecoin
circumvents the above issue; ZKCSP that applies homomorphic
authenticators are known to provide high storage guarantees.

Cryptocurrencies like Bitcoin [3] and Ethereum [4] that are
founded on the blockchain technology enable a way to support
storage auditing in a decentralized fashion. In particular,
Ethereum is extremely helpful because it empowers the ex-
ecution of any highly expressive smart contract (quasi Turing
completeness) bounded by the gas cost. More importantly,
with the property of self-enforcement and public verification,
smart contracts have become a major disruptive force to the
legal sphere in the US, China, etc [10], [11]. Swarm, the
subproject responsible for Ethereum storage services, proposes
the concept of storage auditing in the decentralized paradigm.
However, it falls short of an incentive layer and the fair
auditing service is outsourced to reliable parties, given all the
on-chain constraints of smart contract.

As the leading force of decentralized storage system, Storj
presents an auditing framework with centralized auditors
called “satellites”. However, the selection of these auditors is
subject to their reputation. On this account, the entire system is
built upon the chaining of reputation, where the reputation of
each storage provider is individually determined by satellites.
The problem is that the influential role of satellites may cause
collusion and even amount to a de facto plutocracy, as the Storj
founders and parties with close partnership take a leading role
in maintaining and even controlling the auditing and payment
transactions in the system.

Siacoin [8] is one of the pioneers that proposes a fully
decentralized storage network with publicly verifiable file con-
tracts on top of the blockchain consensus. In its construction,

Smart Contract

Infrastructure

Auditing

Data Owner
Storage providers

A

B

C

Fig. 1: The architecture of the DSN data storage auditing.

storage providers prove the storage by periodically submitting
part of the original file and the corresponding hashes within
the file’s Merkle tree to the blockchain. However, the storage
provider can reuse the proofs for challenged blocks to generate
new proofs accordingly, instead of honestly storing all data
faithfully, due to the low entropy of challenge randomness.

Along with this design, Filecoin [9] presents an user-assisted
auditing framework, with its focus on proof of replication
for public data storage. The submitted proof to the Filecoin
blockchain reaches our requirement of on-chain perfect data
privacy, as the proofs are produced with ZK-SNARK cir-
cuits, though the original intention of Filecoin is to leverage
verifiable computation to compress the proofs. However, the
computational overhead during the trusted setup phase and the
proof generation phase makes it hard to be deployed at present.
Remarks. It is noteworthy that despite the drawbacks we
have pinpointed above, Storj and Siacoin are still under
active research and plans of improvements. At its early stage,
Filecoin is still under heavy construction. We also consider
two generic representatives of ZK-SNARK frameworks that
protect the on-chain privacy, namely ZKCSP [12] for Bitcoin
and Hawk [13] for Ethereum.

III. OVERVIEW

In this section, we aim to provide the background informa-
tion, the system overview, and the adversarial model.

A. Decentralized Storage Architecture

As illustrated in Fig. 1, the system can be categorized into
two parts, namely one for the storage infrastructure, and the
other for auditing as well as incentives. The storage infras-
tructure illustrated in Fig. 1, is responsible for data chunking,
data encryption, erasure coding, distributed networking, etc.
Briefly, data to be outsourced is first chunked into pieces and
encrypted at the block level by the data owner. In addition,
erasure coding [14] (parity blocks) is also required for data
redundancy. At last, the data owner looks up the storage
provider candidates using the distributed hash table [15] and
uses this table for routing.
Discussion on private-storage settings. In our system, we
apply data encryption and erasure coding for private archive
data storage, and we stress that the encryption is a mandatory
action taken on the side of the data owner. To deal with public

storage that cannot apply encryption, Filecoin leverages Data
sealing [9] and proof of replication [16], which is not required
at all in our design.
Further remarks. During the following presentation, for
simplicity, we only consider a one-to-one mapping between a
data owner and a single storage provider. That is, we assume a
simplified scenario, where the data owner stores all data at one
storage provider. While for real-world overhead estimation, the
data owners are free to adjust the data redundancy level and the
number of storage providers, which leads to a linear increase
on the total auditing cost.

B. System Overview

We naturally focus on the design of auditing and incentives.
Specifically, there are three main roles in the framework,
namely the data owner D, who requests for the distributed
storage of its encrypted data and later pays for each round
of storage auditing; the storage provider S, who earns his
deserved profits by storing the storage provider’s files and
cooperating with the storage auditing; and the smart contract
SC dedicated to the auditing job, who faithfully challenges the
storage provider, validates the response proof in each round
of the storage auditing protocol, and accordingly rewards the
honest behaviours and punish the wrongdoers.

After the contract negotiation, D and S first go through a
pre-processing phase and then the periodical auditing would
carry on. To achieve fairness in the blockchain model, both
parties are required to submit deposits ahead of auditing,
the smart contract is responsible for addressing all potential
disputes between D and S. It further takes full control of the
auditing and manages payments.
Assumptions in the blockchain model. In its essence, we
view D and S as two rational players economically, who are
fully incentivized to maximize their monetary rewards. SC
is modeled as an unbiased auditor, who bears the duty of
auditing after D and S have an agreement upon the data
to be outsourced, e.g., the contract duration, the monetary
rewards, etc. When the auditing begins, the smart contract
extracts randomness from a secure randomness beacon [17]
and issues the challenge for each round of auditing. After
receiving the response from S , the smart contract enforces its
pre-determined contract logic, thus maintaining the balance of
the ecosystem in the decentralized world. We stress that the
auditing frequency should be set properly (at least every few
hour), such that compared to the auditing interval, the time of
block confirmation is much smaller.

C. Adversarial Model

First, we need to consider the fairness of incentives. On
the one hand, it is most natural for S to behave unfaithfully.
For instance, it may simply drop the data to reclaim more
storage for more monetary benefits; similarly, it may delicately
discard data rarely accessed by D; it may also hide data loss
incidents for the consideration of his or her own reputation.
On the other hand, an incentive-driven D also has motivation
to behave unfaithfully. In the extreme case, D may generate

D and S have reached a consensus after contract negotiation

Initialize:

On receive (“negotiated”, agrmts , params , metadata) from D, S

assert st = ⊥;
set agrmts; // e.g., T for contract duration, num for auditing times.
set params , metadata;
set st := ACK, cnt := 0;
broadcast “negotiated”;

On receive (“acked”) from S

assert st = ACK;
set st := FREEZE; broadcast “acked”;

On receive (“freeze”, $D, $S) from D, S

assert st = FREEZE;
lock $D, $S for T ;
set st := AUDIT; broadcast “inited”;
call scheduling(“Chal”); // e.g., by Ethereum Alarm Clock service

Audit:

On trigger scheduling (“Chal”)

assert st = AUDIT, cnt ∈ [0,num];
output R from Randomness Beacon;
set st := PROVE; broadcast “challenged”;

On receive (“prove”, prf) from S

assert st = PROVE and cnt ∈ [0,num];
broadcast “proofposted”; call scheduling(“Verify”);

On trigger scheduling (“Verify”)

if cnt ≥ num : ⊥;
if V (params,metadata, prf) = True :

broadcast “pass”;
unlock and transact $ to S;

else :
broadcast “fail”;
unlock and transact $ to D;

cnt++; call scheduling(“Chal”); set st := AUDIT;

Fig. 2: Smart contract functionality for secure storage auditing. The contract is modeled as a state machine. We do not enumerate
all functions in the real contract and roughly divide the procedures into the initialization phase and the auditing phase.

incorrect metadata for the storage provider such that the au-
diting would always favor the data owner’s financial benefits.
Assuming rational economic actors, we rule out the possibility
of malicious behaviors by D and S if they are faced with
financial penalty. Later in Section VI-A, though, we discuss
possible countermeasures to defend against such attacks.

We also need to consider adversarial behavior targeting on-
chain audit trails. We treat the blockchain as a trusted party
under the honest majority assumption, in the sense that it stores
the audit trails in a fully transparent manner. Due to the trans-
parency and tamper-proof property of the blockchain, an off-
chain adversary can observe on-chain audit trails stealthily and
extract knowledge of raw data unknowingly. We emphasize
that in spite of being a seemingly small security loophole, such
vulnerability could be easily leveraged and also augmented
by adversaries to launch more sophisticated attacks. For more
details, see our full analysis in V-E.

IV. STRAWMAN PROPOSAL

To present our main protocol smoothly, we give the follow-
ing strawman proposal that focuses on the seamlessly integra-
tion between auditing and the achievement of fair payments.
Straightforwardly, we leverage a standard set of primitives that
offer on-chain privacy and efficiency simultaneously as the
strawman auditing solution.

A. Primitives

Generally, zero knowledge proofs can convince the verifier
of the validity of a particular statement without leaking any
other information beyond the validity of the statement itself.
Recent progress on practical and generic zero knowledge
proof systems [18], [19] makes them become widely adopted
tools to achieve proof succinctness and quick verification
on the blockchain. It is noteworthy that a number of tools

on zero knowledge proving systems are already available
to support arbitrary computation by implementing general-
purpose compilers from high-level languages. Among all the
zero knowledge proving systems, ZK-SNARK [20], [21] is by
far the most useful construction.
B. Basic Instantiation

As a basic instantiation of the auditing protocol, we can
encapsulate a Merkle-tree based auditing protocol within a
pre-built ZK-SNARK circuit to achieve on-chain privacy and
on-chain efficiency. We first assume the trusted setup has been
accomplished for the ZK circuits and it outputs the proving
key pk and the verification key vk. Also, before auditing, D
needs to construct a Merkle tree from data to be stored and
obtain the Merkle root rt, which can be publicly accessible.
After S receives the data from D, the auditing starts as forms
of challenge-response protocols.

During the contract duration, for each challenge R issued,
D finds the challenged block mi (leaf node in the Merkle tree)
with a pseudo-random function. To prevent public verification
from leaking data information, D leverages the established
ZK-SNARK circuit and pk to generate a zero knowledge proof
prf . The proof validates the statement that the challenged
leaf node mi and the corresponding Merkle path path can
always lead to rt without leaking any information beyond the
statement. With vk and challenge R, the produced prf can be
verified efficiently with on-chain privacy.

C. Disputes and fairness

Disputes could occur even before auditing, which is the
Initialize phase in Fig. 2. After D has deployed a contract
with contract details argmts, params containing pk, vk, and
metadata in the form of rt, S has to agree on them before
the contract can carry on. Notice that D cannot gain profits
by forging params and metadata, as params and metadata

are generated during the trust setup of the ZK-SNARK circuit
for the Merkle tree construction over the data to be stored.
Therefore, in most cases, S simply sends an acknowledgment
signal to the smart contract and then the smart contract
awaits both parties to deposit cryptocurrencies. While in some
extreme circumstances, S may act maliciously, terminating the
contract and thus making D pay the on-chain storage fees for
argmts, params, and metadata. In Section VI-A, we briefly
discuss possible countermeasure.

When the periodical Audit phase in Fig. 2 starts immedi-
ately after the deposits, it is easier to achieve fairness. If S
submits prf that can be verified by vk, S would obtain micro-
payments from the deposits locked by SC; In contrast, if prf
cannot be verified by vk, D would obtain micro-payments.
The above procedures continue with pre-determined auditing
frequency, until eventually the contract expires.

D. Limitations

The strawman solution that uses generic zero knowledge
proofs is notoriously hard to be deployed and also far from
optimal, as a tremendous amount of overhead is forced during
the off-chain procedures, including the trusted setup phase and
the proof generation phase. Besides, challenge randomness
would be exhausted and after that attacks can simply exploit
the reused challenge. In light of the limitations of generic ZK
tools, we need an alternative auditing scheme.

V. OUR MAIN PROTOCOL

With a streamlined smart contract template and a basic
instantiation explained, we now introduce the design rationale
of our main protocol and present our protocol details.

A. Design Rationale

As we have mentioned, it creates a tremendous amount of
off-chain overhead by straightforwardly employing the generic
zero knowledge proving systems. To design a pragmatic audit-
ing protocol with on-chain privacy, on-chain efficiency, and on
that basis also with the consideration of off-chain efficiency,
we turn to the public-key cryptography, more specifically the
homomorphic linear authenticators (HLA). See more related
work in Section VIII.

Basically, HLA encapsulate public homomorphic authen-
ticators for public verification. Extensive research on cloud
storage auditing [22], [23] proves its theoretical asymptotic
efficiency. However, this line of work has yet to be deployed
on a large scale in practice due to the efficiency considera-
tion. Indeed, most designs would bring quite an amount of
processing time for pre-processing and extra storage upon the
storage provider. Though this overhead can be alleviated, as
suggested in [24], it further leads to the increase of proof size.
In order to improve efficiency, the polynomial commitment
can be leveraged to bring down the storage overhead and
processing time without raising the proof size [25], [26].

Without the use of generic ZK tools, applying the efficient
polynomial commitment upon HLA could be dangerous in

the paradigm of decentralized storage. In our following pre-
sentation, we point out the real-world impact of straightfor-
wardly applying a non-ZK version of HLA-based auditing
protocol. We show that potential adversaries could leverage
the “extractable knowledge” sealed in on-chain proofs, and
accelerate the attacking process with other possible attacks
in the real-world scenarios of the blockchain paradigm. On
this account, by leveraging the Sigma protocol [27] that fully
utilizes the algebraic structures of HLA to hide the data, we
propose our synergistic design to achieve on-chain privacy,
on-chain efficiency, and off-chain efficiency at the same time.

B. Audit Details

Figure 3 displays the interactions between the smart contract
and the storage provider. For simplicity, we omit the contract
template and detailed procedures described in Section IV-B.
Denote the security parameter as λ. We use an asymmetric
bilinear map e : G1 × G2 → GT in our following auditing
protocol, where G1 and G2 are multiplicative cyclic groups.
And G1 has prime order p. Let a group generator g1 selected
randomly from G1, a group generator g2 selected randomly
from G2 and specify a random oracle H : {0, 1}∗ → G1.
Assume the file to be stored as F . It is further divided into
n data blocks in the form of group elements. Then, each s
collections of data blocks can constitute data chunks for the
acceleration of data processing and the savings of extra storage
overhead. Formally, F is equivalent to the collection of chunks

{mi = (mi,0, · · · ,mi,s−1) ∈ (Zp)s}
dns e
i=0 , where we use dxe

to indicate the minimal integer larger than or equal to x. Note
that the last data block may need padding.

Definition 1. Denote d =
⌈
n
s

⌉
; Mi(x) = m0,i + m1,i · x1 +

· · · + ms−1,i · xs−1 mod p for i ∈ [0, d) is a polynomial
commitment of data blocks with the degree being s− 1;

Definition 2. Pseudo Random Permutation function π :
{0, 1}λ × {0, 1}logn → {0, 1}k, (k < λ) is a function that
cannot be distinguished from random permutation;
Pseudo Random Function f : {0, 1}λ → Zkp, (k < λ) is a
function that cannot be distinguished from random function.

Initialize. During the generation phase of public parameters,
D should randomly sample two group elements α, x←$Zp,
and set them as the private key. Meanwhile, compute ε ←
gx2 , δ ← gαx2 and {g1α

j}s−2j=0. The public key pk is
(p, ε, δ, {g1α

j}s−2j=0, g2, e(g1, ε), H) and the private key sk is
(x, α). To generate metadata, i.e., homomorphic authenticator,
we utilize the pairing-based polynomial commitment [28], [29]
of the group elements of each block as illustrated below.
Making use of this polynomial, D binds all groups inside
a block to a authenticator. To generate the homomorphic
authenticators, D also needs to sample a file identifier called
name from Zp such that H(name||i) can be used for block
indexing. Noticeably, name is also recorded on the blockchain
for public verification. Putting it together, the authenticators of
each chunk thus becomes σi = (g

Mi(α)
1 ·H(name||i))x ∈ G1.

After D transfers data to be stored and its authenticators in
a secure channel, S checks it with public keys and sends a
signal to the smart contract to either carry on or terminate the
contract. Note that the chance of D forging authenticators is
negligible after this initial check.
Challenge. Due to the throughput and cost-effectiveness of
randomness produced on the blockchain, it is more wise for
S to use pre-determined algorithms to expand the domain of
randomness outputs. Specifically, upon receiving the random
challenges consisting of {C = (C1, C2), r} issued from the
smart contract, S needs to use π and f1 : f to derive {i}k−1i=0

and {ci}k−1i=0 , where k is the number of challenged chunks.

Definition 3. Polynomials derived from or related to Md(x):
Pk(x) =

∑k−1
j=0 cjmj,0 +

∑k−1
j=0 cjmj,1 · x1 + · · · +∑k−1

j=0 cjmj,s−1 ·xs−2 mod p is a polynomial commitment of
linear combinations of k challenged chunks;
The polynomial quotient Qk(x) = Pk(x)−Pk(r)

x−r ≡ β0+β1·x1+

· · ·+βs−1 ·xs−1 mod p; And we have gQk(α)1 =
∏s−1
i=0 (gα

i

1)βi

Audit. Briefly, S generates a proof by computing the authen-
ticator σ, the polynomial commitment Pk(r), and ψ = g

Qk(α)
1

from public keys as well as polynomial quotient coefficient.
For proof verification, by leveraging the techniques intro-

duced in [26], we can derive the following equation:

e(σ, g2) · e(g−Pk(r)1 , ε) = e(χ, ε) · e(ψ, δ · ε−r) (1)

In the above equation, χ is obtained by computing χ =∏
(i,ci)

H(name||i)ci , denoted as
∏
i ti.

C. Impact of On-chain Privacy

One security problem to worry about is that malicious ad-
versaries are able to extract data contents from the polynomial
commitment within the audit trails. To see why, suppose an
adversary observes a sufficiently long sequence of challenges
and proofs. Denote the sequence contains s · u pairs of
challenges (ri,j , C) and proofs (σi,j , {Pk(r)}i,j , ψi,j), where
i ∈ [0, s), j ∈ [0, u).

Since a polynomial with degree s − 1 can eventually re-
covered through the Lagrange polynomial interpolation, given
s points on the polynomials, the adversary is thus able to
reconstruct Pk(x) using the observed challenges and proofs.
At this stage, the adversary already recovers {cj ·mj}(0≤j≤u)
from polynomial coefficients. According to the analysis in
[23], [24], the adversary can easily extract data knowledge
from this linear combination of data blocks given u unknown
data blocks plus u pairs of challenges and proofs.

Indeed in our usage scenario, it creates an opportunity
for anonymous adversaries to exploit the above attacks and
recover partial data, by simply observing and computing from
accumulated challenges and proofs on the blockchain. The
situation gets even worse when the data owner selects a
polynomial with a small degree. In the extreme case of data
of small size (the number of blocks is roughly the same as
the challenge domain), every single block can be recovered
by adversaries given a normal contract duration (e.g., years).

Apart from the direct exploitation of on-chain audit trails,
the adversaries may leverage more advanced attacks to recover
the original data of D. For instance, adversaries can launch
eclipse attacks [30] with low resources [31] to isolate the vic-
tims from the rest of peers in the public blockchain network.
After monopolizing the victims’ view of the blockchain, the
adversaries can then issue a set of well-calculated challenge
randomness and on that basis, extract the original data using
the above-mentioned method much more efficiently.

D. Secure Audit
In view of this, we provide our solution to achieve the on-

chain privacy guarantees. For the following presentation, we
start from the storage provider, who needs to respond to the
challenge by submitting a proof.

1) Computation of auditing proofs. S can compute the
proof using the expanded randomness and polynomials defined
above. First, S produces the aggregated authenticator of the
challenged chunks σ = Πiσ

ci
i ∈ G for i ∈ [0, k). Then,

S computes ψ = g
Qk(α)
1 from the public key{g1α

j}s−1j=0

and coefficients calculated using the finite field polynomial
quotient algorithm in Zp, as α is unknown to S. Instead
of computing Pk(r) that leaks data contents, S needs to
randomly generate a hiding parameter z←$Zp and use it to
further generate another hiding parameter ζ = H ′(R), where
R = e(g1, ε)

z and the random oracle H ′ : GT → Zp is
universal and pre-determined. Denote y = Pk(r), then S can
obtain y′ = ζ ·Pk(r)+z, as forms of Sigma protocols. The final
response from S would be (σ, y′, ψ,R), which is recorded on
the blockchain along with the challenge randomness.
Remarks. To apply the Sigma protocol in the strict sense,
each coefficient of the polynomial Pk(x) requires to be affine
masked with hiding parameters in the finite field and we denote
the new polynomial P ′k(x). Note in practice, though, the hiding
parameters z and ζ is statistically indistinguishable from P ′k(x)
for any probabilistic polynomial time adversary.

2) Procedures of on-chain verification. With the response
posted, the smart contract automatically triggers the verifica-
tion of the storage proof and runs the embedded algorithm
logic. During the verification, the smart contract first derives
χ =

∏
i ti from the public parameter name and the two

seeds. Next, the smart contract also computes ζ ← H ′(R).
To validate the proof, the smart contract checks the equation:

R · e(σζ , g2) · e(g−y
′

1 , ε) = e(χζ , ε) · e(ψζ , δ · ε−r) (2)

It is straightforward to see the above equation holds:

LHS = R · e((
∏
i

ti)
xζ · gxζ·Pk(α)1 , g2) · e(g−(ζ·Pk(r)+z)1 , gx2)

= R · e(g1, g2)x(ζ·(Pk(α)−Pk(r))−z) · e(
∏
i

ti, g2)xζ

= e(g1, g2)xζψ(α−r) · e(
∏
i

ti, g2)xζ = RHS

E. Reliable challenging randomness
One critical issue that affects the correctness and privacy of

proofs is the generation of reliable, unpredictable, unbiased

Illustration of our efficient and secure archive storage auditing protocol to be periodically called on the smart contract

Smart Contract Storage Provider

Challenge:

C1 ←$ {0, 1}λ, C2 ←$ {0, 1}λ, r←$ {0, 1}λ C1, C2, r {i} ← PRP(C1), {ci} ← PRF(C2),

seed←$ {0, 1}λ, construct Zk(x) from seed, z ← Zk(α− r),
Verify:

χ←
∏
(i,ci)

H(name||i)ci , ζ ← H ′(R) σ, y′, ψ,R σ ← Πiσ
ci
i , y

′ ← f(Pk(r)), ψ ← g
Pk(α)−Pk(r)

α−r
1 , R← e(g1, ε)

z

Check the verification equation in Equation 2

Fig. 3: Flowchart of the auditing interaction during our enhanced auditing protocol

randomness. Previously, we assume the smart contract can
simply request from the randomness beacon. But how can
we efficiently obtain adequate randomness in practice? The
most straightforward solution is to call on a number of data
owners to play commit-and-reveal games [32], [33], which is
the core idea behind current implementation of Randao [34]
and many similar services on Ethereum. However, in recent
analysis [35], it shows that the last participant to submit partial
randomness may have a way of maneuvering its partial to
favor its own interest. To this end, recent work [36] uses
the concept of verifiable delay function to fix this loophole.
Alternatively, we can also introduce the extra assumption of
a trusted party, e.g., temporal blockchain from NIST quantum
randomness beacon [37], and directly absorbing randomness
from these trusted sources. In Section VII-B, we show the cost
of randomness generation on the blockchain.

VI. SECURITY ANALYSIS

In this section, we briefly evaluate the security of our secure
auditing protocol of distributed archive storage enforced by
the smart contract by analyzing the fulfillment of the security
guarantees listed in Section III-C.

A. Storage correctness and fairness

We have elaborated the completeness of our secure storage
auditing protocol, i.e., a correct proof would always pass the
verification, as shown in Sec. V-D. Hence, the interests of S
can always be protected during the auditing period.

To show that a malicious S cannot forge a proof detrimental
to the interests of D, we first give a proof sketch of the
extractability of auditing proofs submitted by an honest S.
Essentially, the unforgeable problem can be transformed into
the extractability of knowledge in a proof of knowledge
problem. More specifically, given two valid proof responses
(σ1, y

′
1, ψ1, R1) and (σ2, y

′
2, ψ2, R2), unless the adversary can

break CDH and q-BSDH assumption [38], it is feasible to
extract partial linear combination of data blocks with the
overwhelming probability. Our analysis in the main protocol
has shown some insights. For more proof details, we refer the
readers to the results in [24], [26], [39].

Aside from the data extractability assured in theory, it is still
crucial to specify k to guarantee a high confidence level that
the data stored is not tampered. Plenty of previous studies have
analyzed the relationship between the number of challenged
chunks k and the storage confidence level [40]. Particularly,
setting k to 300 can give D storage assurance of 95% if only
1% of entire data is tampered. In the paradigm of decentralized
archive storage, we believe this amount of challenged chunks
is adequate to protect the interests of D.

Given the above analysis of extractability and practical con-
fidence of storage assurance, we have the following theorem:

Theorem 1. The storage provider cannot generate a proof to
make the verification equation hold when he does not keep the
file intact as it is and the number of challenged chunks is large
enough in the random oracle, given the q-BSDH assumption.

Remarks on fairness in practice. In our threat model, D and
S rational players. While in real-world deployments, a party
may still execute the auditing protocol in a way that harms
others’ interest. For instance, in the initialization phase, S can
always send the rejecting signal to the smart contract and let
S pay on-chain storage cost of public keys. We stress this kind
of denial-of-service attack would be good to none but worse to
himself under a robust reputation-based system. Using similar
countermeasures, other attacks such as the Sybil attack [41],
can also be alleviated.

B. Data privacy on the blockchain

In this part, we show our secure auditing protocol can
prevent data leakage from the auditing proofs stored on the
blockchain. Abstractly, as suggested in [44], it can be seen as a
witness-indistinguishable Sigma protocol [45] for the relation:

R =

{
(pk, {ti}, chal, σ), F

∣∣∣∣∣ σpk ≡ gF1 ·∏
i

ti mod N

}
,

F̃ is the witness in the above relation that counts as private
inputs, which is essentially a linear combination of F .

As a relation with the property of witness indistinguisha-
bility, we can transform it into a more generic relation with
stronger security property of zero knowledge. In fact, we can

TABLE II: Comparison of SNARK-based strawman solution and our main solution.

File Info. Pre-process† Proof Generation Verification

Size Time Param. size # Constraints Time Memory Size Time

Strawman solution∗ 1 KB 260 s 150 MB 3× 105 30 s ∼ 300 MB 384 bytes 30 ms
Our main solution 1 GB ∼ 120 s ∼ 5 KB - 46 ms 3 MB 288 bytes 7 ms

Note that all our evaluation is carried out with quad-core CPUs. Also, our main solution supports data of much larger size and
assures stronger storage guarantees, as in the Merkle tree auditing, only one Merkle path is examined in our experiment.
∗ We leverage the Rust Bellman ZK-SNARK library [42] to implement a proof-of-concept Merkle tree based auditing prototype.
We stress the maximum data size allowed in current implementation is around 16 KB, as suggested in the work [43].
† For the pre-preprocessing phase of our strawman solution, the trusted setup is required for ZK-SNARK circuit during the pre-
processing phase. The number of constraints required is closely related to the circuit size. Public parameters encapsulate the proving
keys, verification keys, etc. While for the pre-processing phase of our HLA-based main solution, the data owner requires to generate
the authenticators and the storage providers can validate the authenticators. Note there is no circuit constraints involved.

further view the authenticator σ as private inputs and prevent
it from being brutal-force attacked by off-chain adversaries.
However, it would not be necessary to hide σ in practice. We
stress that the theorem below can be proven:

Theorem 2. For any probabilistic polynomial time adversary
APPT , the probabilityAPPT can distinguish witness (w1, w2)
after seeing all public inputs is negligible. Moreover, under
the standard Discrete Logarithm assumption, the probability
APPT can distinguish F from random data after seeing all
public inputs are negligible.

Briefly, for the case of distributed archive storage, the
property of witness indistinguishability is adequate to achieve
perfect data privacy on the blockchain. Due to the space limit,
we will not present a formal analysis. Yet the underlying
reason is that the encrypted data domain, along with its
generated authenticators provides plenty of entrophy to prevent
brutal-force attacks even if the adversaries have access to
authenticators stored on the blockchain.

VII. EVALUATION

We now evaluate our auditing protocol by answering the
following questions. First and foremost, what is the on-chain
overhead of the introduced operations? On the basis of that,
what is the overall compulsory auditing cost? Second, what
is the off-chain overhead of our DSN auditing system? Does
it cause heavy usage cost for the data owners and the storage
providers in practical usage? Moreover, what is the scale of
user base the system can support?

A. Implementation and experiments setup

Our implementation follows the design principle of com-
patibility and could be deployed as a plug-in component
suitable for most underlying P2P-akin storage system and
incentive systems constructed on the blockchain. In particular,
we choose Tahoe-LAFS [46] and Ethereum as our testbed.
The major challenge we encounter on the Ethereum platform is
that, it is impossible to efficiently implement most complicated
cryptographic primitives natively due to the restrictions of
the on-chain programming language Solidity. This obstacle
hinders traditional testing approaches of Ethereum Testnet.

Though solid progress of more native language like We-
bAssembly [47] has been proposed in the Ethereum commu-
nity, we find it still requires heavy workload of development
in the foreseeable future.

In view of this, we develop our pre-compiled contract with
opcode optimization. Our contract, along with the off-line
implementations, is consisted of over 1,000 lines of code,
mostly in Golang. Based on our customization of opcode,
we deploy our own private testnet with our preliminary
proof-of-concept implementation. We emphasize our testing
approach is compatible with the current development plan
of the WebAssembly framework proposed by the Ethereum
community. To simulate the basic storage services in the
decentralized archive storage network, the private network is
set up consisting of three nodes, namely one representing the
miner, one for the storage provider, and the other for the data
owner. The miner and the storage provider use Dell Poweredge
T140 servers (Intel Xeon E-2174G CPU x4 @ 3.80 GHz)
in Linux (Ubuntu Server 18.04 LTS). The data owner uses a
Desktop PC (Intel Core i7 8700k CPU x6 @ 3.70 GHz).

For efficient instantiation of pairing-based cryptography,
we leverage the BN256 curve (|p| = |G1| = 256 bits,
|G2| = 512 bits, |GT | = 1536 bits), which is implemented in
the Golang library [48] with optimized assembly language for
elliptic-curve related operations. Another major computational
overhead, aside from elliptic curve operations, is contributed
by the finite field operations over Zp. Due to the constraints of
native math/big library [49] of Golang, we strive to optimize
finite field operations over Zp. Lastly, note that all evaluation
outcomes represent the average results of 100 trials.

B. On-chain efficiency and auditing cost

The top concern for most decentralized applications at-
tributes to the on-chain cost. In our scenario, the on-chain
cost also accounts for the majority of storage fees in our
blockchain-enabled decentralized storage system. Throughout
the whole auditing procedures, the data owner needs to pay
the on-chain cost for the following items.
One-time storage cost. During the pre-processing phase,
our auditing protocol depends on public keys stored on the
blockchain. Figure 4 shows the range of the one-time cost to

0

0.5

1

1.5

2

2.5

3

3.5

4

s = 10 s = 20 s = 50 s = 100

Pu
bl

ic
 K

ey
 S

iz
e

(K
B) w/o on-chain privacy

w/ on-chain privacy

Fig. 4: The initial one-time on-chain
cost for public keys to be recorded.

0

0.2

0.4

0.6

0.8

5 6 7 8 9

G
as

 C
os

t (
M

ill
io

n)

Extrapolated verification time (ms)

w/o on-chain privacy (96-byte proof)
w/ on-chain privacy (288-byte proof)

Fig. 5: Gas cost calculation from proof
size and extrapolated verification time.

$0

$50

$100

$150

$200

$250

$300

30 90 180 360 720 1800

Es
tim

at
ed

 a
ud

iti
ng

 fe
es

Contract duration (days)

daily auditing

weekly auditing

Fig. 6: Auditing fees from contract dura-
tion with tunable auditing frequency.

fluctuate. We stress, though, this cost would be no more than
a few US dollars 1, irrelevant of the storage contract duration.
Per audit cost. As the ZK-SNARK framework serves as our
strawman solution, we compare our main solution with our
extremely streamlined SNARK-based solution at the 128 bit
security level in Table II. To achieve a relatively fair compari-
son, we assume the gas cost incurred by the computational
overhead proportional to the computational time. We then
adopt the ZK-SNARK verification transaction on the Ropsten
Testnet [51] as the baseline benchmark, which is a deployed
ZK-SNARK contract on the main network. Our approach for
extrapolation is illustrated in Fig. 5.

We aggressively optimize the on-chain computational per-
formance, compared to the benchmark implementation [52],
[53]. With the security parameters in our experiment, it would
only cost approximately 589, 000 gases per auditing (7.2 ms
for verification, proof size 288 bytes, containing 3 G1 and
1 GT). To compare with standard generic SNARK-based
solutions, the on-chain cost of our secure auditing protocol is
50% cheaper. To conclude, our main solution produces more
succinct on-chain proofs with less time to compute.
Cost-effectiveness of randomness generation. For each of
the time window for challenging, the smart contract has to
grab enough randomness for producing unique C1, C2, r (48
bytes). The cost of such services ranges from 0.01$ [33] to
0.05$ [34] according to our estimation, which accounts for a
very small percentage of overall cost.
Estimated annual fees. Compared to cloud storage scenarios,
the most significant additional cost of our decentralized archive
storage attributes to the overall on-chain cost, which is propor-
tional to the tunable auditing frequency. It is noteworthy that
in practice, the auditing frequency is supposed to be adjusted
to the order of a day (or greater), considering the blockchain
latency issues and practical needs of storage guarantees.

In Fig. 6, we display the relation between the auditing fre-
quency and the overall cost when the contract duration is fixed.
By keeping a daily auditing contract and even considering the
data redundancy factors illustrated in Section III-A (e.g., 3-
out-of-10 erasure coding), the annual auditing on-chain cost
is close to the same level of most cloud storage providers’

1ETH price is 143 USD/ETH and gas cost is 5 Gwei [50], as of Apr 2020.

annual storage fees2.

C. Off-chain overhead

As shown in Table II, SNARK-based solutions incur tremen-
dous overhead on the data owner during the trusted setup
phase and on the storage provider during the proof generation
phase. While our auditing protocol would largely alleviate the
overhead on both the data owner and the storage provider.
Minimized work for data owner. Compared to the heavy-
weight SNARK-based solution, our auditing protocol only
requires the data owner to invest a one-time and rather
insignificant amount of time for pre-processing. In contrast,
SNARK-based solutions produce public parameters of size up
to hundreds of Megabytes, and require a massive amount of
time even for a small piece of data (see our strawman solution
evaluation of pre-processing in Table II). Compare to prior
arts [23], [24], our solution largely diminish the time required,
as illustrated in Fig. 7. To outsource a file of 1GB size, the
data owner only needs to spend 2 minutes when setting the
storage/computational parameter s to 50 on a quad-core laptop.
Notice that aside from the signature generation time during the
user’s preprocessing period, we also count other factors such
as key generation and polynomial coefficient transformation
of data blocks, into preprocessing time in a broader sense.
Efficient storage provider. The storage providers also benefit
from our auditing solutions. By introducing the parameter s,
the size of extra storage taken from the storage provider is
only 1/s of the original data size. Although by increasing the
parameter s, the time for generating proofs also grows, the
actual results are quite gratifying, given all the cryptographic
operations in Zp and on elliptic curves. Figure 8 displays the
processing time for detailed operations, when the number of
challenged blocks is set to 300. We stress that it is important
to restrict the computational overhead on the side of storage
providers. We also present a more thorough comparison, when
the number of challenged blocks varies and suits for different
storage guarantee levels. In Fig. 9, we find that the time for
generating a proof increases significantly, as the confidence
level of storage guarantees climbs from 91% (number of
challenged blocks equal to 240) to 99% (number of challenged
blocks equal to 460), given 1% of data tampering.

2Dropbox Business [54] offers a standard price of 150$, as of Apr 2020.

0

1000

2000

3000

4000

0

200

400

600

s=10 s=20 s=30 s=50 s=80 s=100 s=200 s=300 s=500

w/ s param. w/o s param.

(s
)

(s
)

Fig. 7: Time for D to pre-process 1
GB data with quad-core CPUs. When
s is tuned to around 50, D achieves the
optimal time. Note this pre-processing
time is proportional to the file size. In
the case of s = 50, pre-processing speed
is around 35.31 MB/s.

s = 10 s = 20 s = 50 s = 100
0

10

20

30

40

50

s = 10s = 20s = 50s = 100

Pr
ov

e
tim

e
(m

s)

ECC ops

Zp ops

ECC ops +
security

Zp ops +
security

Fig. 8: Time for S to generate a proof,
k = 300 (i.e., 95% conf. when 1%
data corrupted). Time for Zp operations
peaks when s is around 50. Yet this
amount of time for Zp still counts as
a minor role. By and large, ECC oper-
ations dominate the running time.

15

20

25

30

35

40

45

91% 93% 95% 97% 99%

Pr
ov

e
Ti

m
e

(m
s)

w/ on-chain privacy w/o on-chain privacy

Fig. 9: Time for generating a proof
increases, as the probability of stor-
age guarantees goes up (when there is
1% data corruption). The dotted line
shows the proving process without any
on-chain privacy guarantees whilest the
solid line shows the opposite.

0

0.2

0.4

0.6

0.8

1

1.2

1000 2000 5000 8000 10000

Bl
oc

kc
ha

in
 S

iz
e

 (G

B/
ye

ar
)

User Base

0

5

10

15

20

25

30

10 20 50 100 150 300

Pr
ov

e
Ti

m
e

fo
r a

ll

 (s

)

Users with Data on each Provider

Fig. 10: Annual growth of blockchain size and time for
processing all contracts on each D. The major contributing
factor for both is the user base, which could be in the case of
thousands. Note that the latter is directly affected by # of D
(typically dozens of) with data on each S.

D. System-wide factors

Blockchain throughput. For a single data owner to store
data, the auditing cost is mostly affected by the factor of
auditing frequency. However, when the scale of user base
grows, the scalability of the entire decentralized storage system
is constricted by the throughput of the blockchain. In the real-
world deployment, we could use a dedicated Ethereum fork for
the auditing use only. We further assume the average block size
is around 18 KB, which is closely to the average block size on
Ethereum [55] in the past 6 months. Under this assumptions,
the average throughput would be 2 transactions per second.
Even we take the factor of data redundancy for data spares into
consideration, our system could support 5, 000 active users at
the same time with ease. For comparison, both Storj [7] and
Siacoin only support a 1, 000 user storage system presently.
Scalability. As indicated in the left sub-figure of Fig. 10, the
estimated annual growth of the blockchain size would be at
a slower place, compared to a daily growth of around 128
MB [56] for the present Ethereum platform. From our col-
lected data on the Siacoin and Storj network, we discover that
in a system with 1, 000 users, on average a storage provider
may have to store data from approximately 30 users. Though
our auditing protocol natively supports the batch auditing [23],

the proof generation time still grows proportionally with the
number of public keys. The sub-figure on the right side of
Figure 10 displays the overall proving time required for each
storage provider when the number of users who store data
on them increases progressively, assuming a linear regression
model. In particular, it may cost the storage provider approxi-
mately 20 seconds to complete all proof generation procedures
when the number of users is 5, 000. Yet we argue this amount
of time is tolerable, as the latency (avg. confirmation time) on
the asynchronized blockchain costs a similar amount of time.

VIII. RELATED WORK

Numerous research has been conducted upon proof of
storage in the past decade. The most straightforward auditing
scheme is applying the standard hash function or message
authentication codes (MAC) to check the data integrity at an
untrusted location. Despite the computational efficiency, this
scheme does not scale due to the inconvenience that the verifier
has to re-compute the result with the same data input. Also, it
cannot support unlimited times of challenges. Consequently,
most deployed solutions construct a Merkle tree over the data
to reduce the communication and verification overhead.

In the settings of cloud storage auditing, most designs
leverage the public key cryptography [24], [40], which ag-
gregates the authenticators of blocks and thus produces short
proofs. Later on, the developments in the field of public
verification [24], [57], efficiency improvements [25], [26]
and dynamism [57]–[59] have led to a renewed interest in
the literature of storage auditing and its further application
in the cloud storage settings. However, these prior auditing
designs cannot satisfactorily address the unique challenges in
the paradigm of decentralized archive storage.

IX. CONCLUSION

Envisioning a future of alternative decentralized storage, we
propose a pragmatic and secure auditing protocol with strong
on-chain privacy guarantees and least amount of on-chain
overhead. Preliminary evaluation indicates the practicality and

cost-effective of our auditing protocol. We hope our work
encourages new techniques and designs for a more promising
decentralized storage marketplace.

ACKNOWLEDGMENT

We thank the reviewers for their helpful comments and
valuable suggestions. This research has been supported in part
by the Research Grants Council of Hong Kong under Grants
CityU 11217819, CityU 11212717, CityU C1008-16G, in part
by the Innovation and Technology Commission of Hong Kong
under ITF Project ITS/145/19, and in part by the National
Natural Science Foundation of China (NSFC) under Grants
61572412, 61822207, U1636219, and U1636205.

REFERENCES

[1] B. Cohen, “Incentives build robustness in bittorrent.” http://bittorrent.o
rg/bittorrentecon.pdf, 2003.

[2] J. Benet, “IPFS — content addressed, versioned, P2P file system,” CoRR,
vol. abs/1407.3561, 2014.

[3] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[4] G. Wood, “Ethereum: A secure decentralised generalised transaction

ledger,” Ethereum project yellow paper, 2014.
[5] M. Finck, “Blockchains and data protection in the european union,” Eur.

Data Prot. L. Rev, vol. 4, p. 17, 2018.
[6] N. Eichler, S. Jongerius, G. McMullen, O. Naegele, L. Steininger, and

K. Wagner, “Blockchain, data protection, and the gdpr,” 2018.
[7] “Storjstat.” https://storjstat.com/, 2019.
[8] L. C. David Vorick, “Sia: Simple decentralized storage,” 2014.
[9] P. Labs, “Filecoin: A decentralized storage network,” 2017.

[10] Scott Kimpel and Christopher Adcock, “The state of smart contract
legislation.” https://www.blockchainlegalresource.com/2018/09/stat
e-smart-contract-legislation, 2018.

[11] Mark Emem, “Blockchain records will now be accepted as legal evi-
dence, china’s supreme court rules.” https://finance.yahoo.com/news/bl
ockchain-records-now-accepted-legal-121050674.html, 2018.

[12] M. Campanelli, R. Gennaro, S. Goldfeder, and L. Nizzardo, “Zero-
knowledge contingent payments revisited: Attacks and payments for
services,” in Proc. of ACM CCS, 2017.

[13] A. E. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in Proc. of IEEE S&P, 2016.

[14] K. D. Bowers, A. Juels, and A. Oprea, “Proofs of retrievability: theory
and implementation,” in Proc. of ACM CCS Workshop, 2009.

[15] I. Stoica, R. T. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
protocol for internet applications,” IEEE/ACM Trans. Netw, vol. 11,
no. 1, pp. 17–32, 2003.

[16] B. Fisch, “Tight proofs of space and replication,” in Proc. of EURO-
CRYPT, 2019.

[17] M. O. Rabin, “Transaction protection by beacons,” J. Comput. Syst. Sci,
vol. 27, no. 2, pp. 256–267, 1983.

[18] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly
practical verifiable computation,” in Proc. of IEEE S&P, 2013.

[19] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza, “Snarks
for C: verifying program executions succinctly and in zero knowledge,”
in Proc. of CRYPTO, 2013.

[20] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-
interactive zero knowledge for a von neumann architecture,” in Proc. of
USENIX Security, 2014.

[21] J. Groth, “On the size of pairing-based non-interactive arguments,” in
Proc. of EUROCRYPT, 2016.

[22] C. Wang, Q. Wang, K. Ren, and W. Lou, “Ensuring data storage security
in cloud computing,” in Proc. of IEEE/ACM IWQoS, 2009.

[23] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving public
auditing for data storage security in cloud computing,” in Proc. of IEEE
INFOCOM, 2010.

[24] H. Shacham and B. Waters, “Compact proofs of retrievability,” J.
Cryptology, vol. 26, no. 3, pp. 442–483, 2013.

[25] J. Xu and E. Chang, “Towards efficient proofs of retrievability,” in Proc.
of ACM ASIACCS, 2012.

[26] J. Yuan and S. Yu, “Proofs of retrievability with public verifiability
and constant communication cost in cloud,” in Proc. of ACM ASIACCS,
2013.

[27] C. Schnorr, “Efficient signature generation by smart cards,” J. Cryptol-
ogy, vol. 4, no. 3, pp. 161–174, 1991.

[28] A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-size commitments
to polynomials and their applications,” in Proc. of ASIACRYPT, 2010.

[29] B. Libert, S. C. Ramanna, and M. Yung, “Functional commitment
schemes: From polynomial commitments to pairing-based accumulators
from simple assumptions,” in Proc. of ICALP, 2016.

[30] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on
bitcoin’s peer-to-peer network,” in Proc. of USENIX Security, 2015.

[31] Y. Marcus, E. Heilman, and S. Goldberg, “Low-resource eclipse attacks
on ethereum’s peer-to-peer network.” Cryptology ePrint Archive, Report
2018/236, 2018. https://eprint.iacr.org/2018/236.

[32] E. Syta, P. Jovanovic, E. Kokoris-Kogias, N. Gailly, L. Gasser, I. Khoffi,
M. J. Fischer, and B. Ford, “Scalable bias-resistant distributed random-
ness,” in Proc. of IEEE S&P, 2017.

[33] P. Schindler, A. Judmayer, N. Stifter, and E. Weippl, “Hydrand: Practical
continuous distributed randomness.” Cryptology ePrint Archive, Report
2018/319, 2018. https://eprint.iacr.org/2018/319.

[34] “Randao: Verifiable random number generation.” https://www.randao.o
rg/, 2019.

[35] K. Chatterjee, A. K. Goharshady, and A. Pourdamghani, “Probabilistic
smart contracts: Secure randomness on the blockchain,” in Proc. of IEEE
ICBC, 2019.

[36] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch, “Verifiable delay
functions,” in Proc. of CRYPTO, 2018.

[37] “Temtum: White paper.” https://temtum.com/whitepaper/, 2019.
[38] D. Boneh and X. Boyen, “Short signatures without random oracles,” in

Proc. of EUROCRYPT, 2004.
[39] J. Zhang, B. Wang, D. He, and X. A. Wang, “Improved secure fuzzy

auditing protocol for cloud data storage,” Soft Comput., vol. 23, no. 10,
pp. 3411–3422, 2019.

[40] G. Ateniese, R. C. Burns, R. Curtmola, J. Herring, L. Kissner, Z. N. J.
Peterson, and D. X. Song, “Provable data possession at untrusted stores,”
in Proc. of ACM CCS, 2007.

[41] J. R. Douceur, “The sybil attack,” in Proc. of IPTPS, 2002.
[42] Zcash, “Github zk-snark library.” https://github.com/zcash/librustzcash/

tree/master/bellman, 2019.
[43] T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song, “Libra:

Succinct zero-knowledge proofs with optimal prover computation,” in
Proc. of CRYPTO, 2019.

[44] G. Ateniese, A. Faonio, and S. Kamara, “Leakage-resilient identification
schemes from zero-knowledge proofs of storage,” in Proc. of IMACC,
2015.

[45] C. Ronald, “Modular design of secure yet practical cryptographic
protocols,” Ph. D. Thesis, CWI and University of Amsterdam, 1996.

[46] “Tahoe-lafs.” https://tahoe-lafs.org/trac/tahoe-lafs, 2019.
[47] “Ethereum flavored webassembly (ewasm).” https://github.com/ewasm

/design, 2019.
[48] Cloudflare, “Package bn256 implements a particular bilinear group at

the 128-bit security level.” https://github.com/cloudflare/bn256, 2019.
[49] “math/big: implement recursive division algorithm.” https://github.com

/golang/go/issues/21960, 2017.
[50] “Recommended gas prices in gwei.” https://www.ethgasstation.info/,

2019.
[51] “Etherscan transaction details.” https://ropsten.etherscan.io/tx/0x15e7f5

ad316807ba16fe669a07137a5148973235738ac424d5b70f89ae7625e3,
2017.

[52] “Snark test in solidity.” https://gist.github.com/chriseth/f9be9d9391efc
5beb9704255a8e2989d, 2017.

[53] “Bn256 pre-compiled contract in go-ethereum.” https://github.com/eth
ereum/go-ethereum/blob/master/crypto/bn256/google/bn256.go, 2017.

[54] “Dropbox pricing.” https://www.dropbox.com/business/pricing, 2019.
[55] Ethereum, “Etherscan.” https://etherscan.io/, 2019.
[56] “Ethereum transaction history.” https://etherscan.io/chart/tx, 2019.
[57] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling public

verifiability and data dynamics for storage security in cloud computing,”
in Proc. of ESORICS, 2009.

[58] C. C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, “Dynamic
provable data possession,” in Proc. of ACM CCS, 2009.

[59] E. Shi, E. Stefanov, and C. Papamanthou, “Practical dynamic proofs of
retrievability,” in Proc. of ACM CCS, 2013.

