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Ubiquitous cloud storage



However…

‣ Data privacy concerns

‣ Opaque service model

‣ Blind trust based SLA, e.g., data integrity and data availability

‣ …

What’s been done inside?

Centralized



Active Research on extending visibility inside cloud

‣ Proof of Storage

‣ Proof of Data Encryption

‣ Proof of Data Redundancy

‣ Proof of Ownership

‣ Cryptographic Database System

‣ Confidential Computing

‣ …

Yet, little incentive to adopt all



Growing interest in decentralized storage

‣ Sharing economy paradigm

‣ Individual providers rent out unused storage for rewards

‣ Bodes well a billon-dollar marketplace
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‣ An alternative to cloud storage

‣ Built-in encrypted storage & data integrity guarantee

‣ Transparent redundancy/replication for availability

General picture of data outsourcing procedures
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➢ Need continuous auditing to ensure storage services?



Storage auditing

‣ A challenge-response protocol for storage integrity/retrievability assurance
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Is data correctly stored? 

Storage correctness proofs



Primitives for storage auditing

Proofs of Retrievability (PoR) [Juels-Kaliski ‘07]

• An efficient audit protocol between client & server.

• A server that passes the audit must know all of the client data. 

Knowledge: formalized using an extractor (proof-of-knowledge [GMR85]). 

Efficiency: client and server computation is polylog in size of data. 

Related notions:

▪ Sub-linear authenticators [Naor-Rothblum ‘05]

▪ Proofs of data possession [Ateniese et al. ‘07], e.g., Merkle tree construction



Continuous auditing for decentralized storage

Storage ProviderSmart Contract Is data correctly stored? 

Storage correctness proof

‣ Starting from PoR/PDP, latest efforts as Proof of Storage-time [NDSS2020]

‣ Formalizing continuous auditing, a generic extension of PoR/PDP

‣ The instantiation is yet to be satisfactory nor practical: 

‣ Stateful with bounded usage

‣ Large prover cost* 

‣ Intrinsically not friendly to dynamics

*Intentional design choice for a security consideration



Continuous auditing for decentralized storage

Storage ProviderSmart Contract Is data correctly stored? 

Storage correctness proof

‣ We focus on a concrete auditing design in the context of DSN

‣ Preventing threats that exploit on-chain proofs 

‣ Concrete efficiency in practical settings

‣ Possible adoption to complement prior arts in continuous auditing

‣ More friendly to potential dynamics support



‣ Audit history stored on the blockchain 

‣ Natural fit in the incentive system

‣ Technically strengthen SLA assurance

Periodical and transparent auditing
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Immed. Chal. #1 When transparency meets extractability … 

‣ Audit history on the blockchain may be abused to recover partial data

‣ Any off-chain adversaries can abuse on-chain data stealthily

‣ Proofs on chain must not reveal bits for data recovery, regardless of data encryption 
(Finck, Michèle. "Blockchains and data protection in the European union." Eur. Data Prot. L. Rev. 4 (2018): 17.)



Immed. Chal. #2 Concrete efficiency is critical

‣ As on-chain proof verification is done by each 

miner, thus we need

‣ Succinct proof

‣ Quick verification

‣ Ideally, reduce overall cost as far as possible

‣ Data preprocessing

‣ Prover cost

‣ More...
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Begin with zero knowledge auditing

‣ Revealing nothing but the correctness of auditing proofs

‣ Adopt generic frameworks over any storage auditing design

‣ Apply customized approach on specific storage auditing scheme
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Generic approach not yet practical

‣ ZK-SNARK (generic ZKP framework) wrap-up over Merkle tree for zero 

knowledge auditing

‣ In a Merkle tree, with root R, we can verify any leaf nodes

‣ Verification: h(h(a, h(x), c) = R, where h is a cryptographic hash function

‣ Large overhead yet to be overcome, and hardly scalable



We resort to customized approach

‣ Homomorphic Linear Authenticator (HLA)

‣ Generate authenticator (signature) for each data block for verification.

‣ Data blocks and authenticators can be aggregated
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We resort to customized approach
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1. Cloud server picks a random r. 

2. Computes 

3.  μ  = r + γ μ mod p.

A quick exemplary illustration 

• Random masking* for ZK storage auditing 

Friendly to algebraic operations

• Small computational overhead

• Small increase in proof size 

*Adopted in TC’13 (Want et al.)  and many follow-ups



Storage / bandwidth tradeoff for HLA 

‣ Standard HLA has one authenticator per block

‣ Per block authenticator generation can be costly

‣ Authenticators would double the storage

‣ Response / proof size is small
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‣ If adopting a tradeoff parameter s

‣ Bind s blocks with one authenticator

‣ 1/s preprocess cost; 1/s storage overhead

‣ s times response / proof size



Efficiency refinements by polynomial commitment

‣ Increased proof size yields undesirable on-

chain overhead 

‣ μ now expanded by s times

‣ Leveraging polynomial commitment1 

‣ From O(s) to O(1) proof size, same as 

HLA without tradeoff parameter

1. Kate., et al. "Constant-Size Commitments to Polynomials and Their Applications." AsiaCrypt’10
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Efficiency refinements by polynomial commitment

‣ High-level idea of polynomial commitment

‣ For any polynomial f(x) and value r, (x-r) 

divides the polynomial f(x)–f(r)

‣ Prover can compute quotient polynomial

‣ Prover can also generate commitment of 

quotient polynomial using public keys

‣ The commitment can compactly represent a 

vector of s data blocks in a storage proof
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Efficiency refinements by polynomial commitment

• Key setup: {𝑔, 𝑔α, 𝑔α
2
, …, 𝑔α

𝑠−1
}, other pk

• Data preprocessing: σ𝑖 = 𝑔𝑀𝑖 𝛼 𝐻(𝑛𝑎𝑚𝑒| 𝑖 𝑥

• Challenge: {𝑖, 𝑐𝑖} expanded through PRP & PRF

• Proof generation: a = H’(R), submit {𝑦′, σ, ψ, 𝑅}

‣ less than 300 bytes

• Proof verification (high-level):

𝑚11

𝑚21

…
𝑚𝑠1

𝑐1 +

𝑚12

𝑚22

…
𝑚𝑠2

𝑐2 + ⋯

𝑚1𝑑

𝑚2𝑑

…
𝑚𝑠𝑑
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=

μ1
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…
μ𝑠

𝑦′ = a 𝑃𝑘(𝑟) + b 

𝑄𝑘(𝑥) =
𝑃𝑘(𝑥) − 𝑃𝑘(𝑟)

𝑥 − 𝑟

ψ = 𝑔𝑄𝑘(α)
𝑔𝑃𝑘 α − 𝑃𝑘(𝑟) = 𝑔 (α−𝑟)𝑄𝑘(α)



Security analysis 

Simulator Adversary

Forge

Our proposed design achieves the following guarantee.

• Soundness => forgeability of authenticators; Knowledge extractability; 

• Probabilistic guarantee of random sampling using techniques of combinatorics

• Zero Knowledge => Witness-indistinguishable Sigma protocol

• Under the assumptions of: Computational Diffie-Hellman (CDH),

Bilinear Strong Diffie-Hellman problem (q-BSDH).



Many other practical considerations

• Generating cheap & unbiased random challenges on blockchain

• Engineering the crypto pieces together

• e.g., limited crypto support at EVM

• e.g., what concrete construction to use, RSA VS ECC

• …



Evaluation

• We have developed a fully functioning prototype using the Ethereum smart 

contract atop of a DSN infrastructure with Tahoe-LAFS



Evaluation

• Per audit cost: 0.13 USD

• Overall auditing fees comparable with cloud 

storage fees

‣ If applying 3-out-of-10 coding for availability, 

daily auditing

• 2 min for pre-processing a file of 1 GB size

• Can scale to thousands of users

‣ With adequate Blockchain throughput, batch 

processing on storage providers



Concluding remarks

• We propose a concrete auditing construction in the context of DSN 

‣ Preventing exploit of on-chain proofs

‣ Concrete efficiency on both storage overhead and succinct proof size

• Our instantiation can be easily adopted to complement prior arts in continuous auditing

• Future tasks: 

‣ Potential support for data dynamics (possibly easier from our HLA-based direction) 

‣ Batching multiple proofs


